Simulation of the effect of high-intensity turbulence flow parameters on unsteady boundary layers with streamwise pressure gradients

2008 ◽  
Vol 43 (2) ◽  
pp. 274-286 ◽  
Author(s):  
V. A. Aleksin
2009 ◽  
Vol 630 ◽  
pp. 225-265 ◽  
Author(s):  
ISAAC W. EKOTO ◽  
RODNEY D. W. BOWERSOX ◽  
THOMAS BEUTNER ◽  
LARRY GOSS

The response of the mean and turbulent flow structure of a supersonic high-Reynolds-number turbulent boundary layer flow subjected to local and global mechanical distortions was experimentally examined. Local disturbances were introduced via small-scale wall patterns, and global distortions were induced through streamline curvature-driven pressure gradients. Local surface topologies included k-type diamond and d-type square elements; a smooth wall was examined for comparison purposes. Three global distortions were studied with each of the three surface topologies. Measurements included planar contours of the mean and fluctuating velocity via particle image velocimetry, Pitot pressure profiles, pressure sensitive paint and Schlieren photography. The velocity data were acquired with sufficient resolution to characterize the mean and turbulent flow structure and to examine interactions between the local surface roughness distortions and the imposed pressure gradients on the turbulence production. A strong response to both the local and global distortions was observed with the diamond elements, where the effect of the elements extended into the outer regions of the boundary layer. It was shown that the primary cause for the observed response was the result of local shock and expansion waves modifying the turbulence structure and production. By contrast, the square elements showed a less pronounced response to local flow distortions as the waves were significantly weaker. However, the frictional losses were higher for the blunter square roughness elements. Detailed quantitative characterizations of the turbulence flow structure and the associated production mechanisms are described herein. These experiments demonstrate fundamental differences between supersonic and subsonic rough-wall flows, and the new understanding of the underlying mechanisms provides a scientific basis to systematically modify the mean and turbulence flow structure all the way across supersonic boundary layers.


2020 ◽  
Vol 142 (6) ◽  
Author(s):  
M. Dellacasagrande ◽  
D. Lengani ◽  
D. Simoni ◽  
M. Ubaldi ◽  
P. Zunino

Abstract The paper presents several results from an experimental data base on transitional boundary layers developing on a flat plate installed within a variable area opening endwall channel. Measurements have been carried out by means of time-resolved particle image velocimetry (PIV). The overall test matrix spans three Reynolds numbers, four freestream turbulence intensity levels, and four different flow pressure gradients. For each condition, 16,000 instantaneous flow fields have been acquired in order to obtain high statistical accuracy. The flow parameters have been varied in order to provide a gradual shift of the mode of transition from a by-pass process to separated flow transition. In order to quantify the influence of the flow parameter variation on the boundary layer transition process, the transition onset and end positions, and the turbulent spot production rate have been evaluated with a wavelet-based intermittency detection technique for every condition exhibiting a complete transition process. The by-pass transition mode has the longest transition length that decreases with increasing the Reynolds number. The transition length of the separated flow case is smaller than the by-pass one, and the variation of the flow parameters has a similar impact. The variation of the inlet turbulence intensity has a small influence on this parameter except for the condition at the highest turbulence intensity that always shows the lowest turbulent spot production rate because a by-pass type transition occurs. This large amount of data has been used to develop new correlations used to predict the spot production rate and the transition length in attached and separated flows.


1997 ◽  
Vol 119 (3) ◽  
pp. 541-549 ◽  
Author(s):  
E. Hytopoulos ◽  
J. A. Schetz ◽  
R. L. Simpson

A new turbulence model for two-dimensional, steady and unsteady boundary layers in strong adverse pressure gradients is described. The model is developed in a rational way based on understanding of the flow physics obtained from experiments. The turbulent shear stress is given by a mixing length model, but the mixing length in the outer region is not a constant times the boundary layer thickness; it varies according to an integral form of the turbulence kinetic energy equation. This approach accounts for the history effects of the turbulence. The form of the near-wall mixing length model is derived based on the distribution of the shear stress near the wall, and it takes into account the pressure and convection terms which become important in strong adverse pressure gradients. Since the significance of the normal stresses in turbulent kinetic energy production increases as separation is approached, a model accounting for this contribution is incorporated. Experimental data indicate a change in turbulence structure near and through separation. Such a change can be significant and is accounted for here using an empirical function. The complete model was tested against steady and unsteady, two-dimensional experimental cases with adverse pressure gradients up to separation. Improved predictions compared to those obtained with other turbulence models were demonstrated.


1993 ◽  
Vol 115 (4) ◽  
pp. 597-602 ◽  
Author(s):  
S. H. Lam ◽  
N. Rott

The Lam and Rott theory of linearized unsteady boundary layers is revisited, and some new results are obtained. The exact outer eigen-solution for a flat plate found in the original paper is shown to be a special case of the Prandtl-Glauert transposition theorem. The streamwise coordinate-dependent factor of the inner eigen-solutions, first found by M. E. Goldstein for the flat plate, is generalized for arbitrary pressure gradients.


2021 ◽  
Author(s):  
Scott J. Peltier ◽  
Brian E. Rice ◽  
Ethan Johnson ◽  
Venkateswaran Narayanaswamy ◽  
Marvin E. Sellers

1996 ◽  
Vol 118 (4) ◽  
pp. 728-736 ◽  
Author(s):  
S. P. Mislevy ◽  
T. Wang

The effects of adverse pressure gradients on the thermal and momentum characteristics of a heated transitional boundary layer were investigated with free-stream turbulence ranging from 0.3 to 0.6 percent. Boundary layer measurements were conducted for two constant-K cases, K1 = −0.51 × 10−6 and K2 = −1.05 × 10−6. The fluctuation quantities, u′, ν′, t′, the Reynolds shear stress (uν), and the Reynolds heat fluxes (νt and ut) were measured. In general, u′/U∞, ν′/U∞, and νt have higher values across the boundary layer for the adverse pressure-gradient cases than they do for the baseline case (K = 0). The development of ν′ for the adverse pressure gradients was more actively involved than that of the baseline. In the early transition region, the Reynolds shear stress distribution for the K2 case showed a near-wall region of high-turbulent shear generated at Y+ = 7. At stations farther downstream, this near-wall shear reduced in magnitude, while a second region of high-turbulent shear developed at Y+ = 70. For the baseline case, however, the maximum turbulent shear in the transition region was generated at Y+ = 70, and no near-wall high-shear region was seen. Stronger adverse pressure gradients appear to produce more uniform and higher t′ in the near-wall region (Y+ < 20) in both transitional and turbulent boundary layers. The instantaneous velocity signals did not show any clear turbulent/nonturbulent demarcations in the transition region. Increasingly stronger adverse pressure gradients seemed to produce large non turbulent unsteadiness (or instability waves) at a similar magnitude as the turbulent fluctuations such that the production of turbulent spots was obscured. The turbulent spots could not be identified visually or through conventional conditional-sampling schemes. In addition, the streamwise evolution of eddy viscosity, turbulent thermal diffusivity, and Prt, are also presented.


Sign in / Sign up

Export Citation Format

Share Document