Conical gas flows with shock waves and turbulent boundary layer separation

2012 ◽  
Vol 47 (2) ◽  
pp. 263-280 ◽  
Author(s):  
M. A. Zubin ◽  
N. A. Ostapenko ◽  
A. A. Chulkov
2005 ◽  
Vol 50 (9) ◽  
pp. 473-477 ◽  
Author(s):  
M. A. Zubin ◽  
N. A. Ostapenko ◽  
A. A. Chulkov

1968 ◽  
Vol 32 (2) ◽  
pp. 293-304 ◽  
Author(s):  
V. A. Sandborn ◽  
C. Y. Liu

An experimental and analytical study of the separation of a turbulent boundary layer is reported. The turbulent boundary-layer separation model proposed by Sandborn & Kline (1961) is demonstrated to predict the experimental results. Two distinct turbulent separation regions, an intermittent and a steady separation, with correspondingly different velocity distributions are confirmed. The true zero wall shear stress turbulent separation point is determined by electronic means. The associated mean velocity profile is shown to belong to the same family of profiles as found for laminar separation. The velocity distribution at the point of reattachment of a turbulent boundary layer behind a step is also shown to belong to the laminar separation family.Prediction of the location of steady turbulent boundary-layer separation is made using the technique employed by Stratford (1959) for intermittent separation.


1969 ◽  
Vol 36 (3) ◽  
pp. 598-607 ◽  
Author(s):  
T. Maxworthy

Flow around a sphere for Reynolds numbers between 2 × 105 and 6 × 104 has been observed by measuring the pressure distribution around a circle of longitude under a variety of conditions. These include the effects of laminar and turbulent boundary layer separation, tunnel blockage, various boundary layer trip arrangements and inserting an object to disrupt the unsteady, recirculation region behind the sphere.


Author(s):  
K. Stewartson

AbstractThe effect on the boundary-layer equations of a weak shock wave of strength ∈ has been investigated, and it is shown that ifRis the Reynolds number of the boundary layer, separation occurs when ∈ =o(R−i). The boundary-layer assumptions are then investigated and shown to be consistent. It is inferred that separation will occur if a shock wave meets a boundary and the above condition is satisfied.


Sign in / Sign up

Export Citation Format

Share Document