scholarly journals Erratum to: Geochemical Features of the Moon and Earth Predetermined by the Mechanism of Formation of the Earth–Moon System (Report at the 81st International Meteorite Conference, Moscow, July 2018) [Geochemistry International, 2019, Vol. 57, No. 8]

2019 ◽  
Vol 57 (10) ◽  
pp. 1124-1124
Author(s):  
E. M. Galimov
2019 ◽  
Vol 64 (8) ◽  
pp. 762-776
Author(s):  
E. M. Galimov

This article discusses some features of geochemistry of the Earth and the Moon, which manifests the specificity of the mechanism of their formation by fragmentation of protoplanetary gas-dust condensation (Galimov & Krivtsov, 2012). The principal difference between this model and other hypotheses of the Earth-Moon system formation, including the megaimpact hypothesis, is that it assumes the existence of a long stage of the dispersed state of matter, starting with the formation of protoplanetary gas-dust condensation, its compression and fragmentation and ending with the final accretion to the formed high-temperature embryos of the Earth and the Moon. The presence of the dispersed state allows a certain way to interpret the observed properties of the Earth-Moon system. Partial evaporation of solid particles due to adiabatic heating of the compressing condensation leads to the loss of volatiles including FeO. Computer simulations show that the final accretion is mainly performed on a larger fragment (the Earth’s embryo) and only slightly increases the mass of the smaller fragment (the Moon embryo).This explains the relative depletion of the Moon in iron and volatile and the increased concentration of refractory components compared to the Earth. The reversible nature of evaporation into the dispersed space, in contrast to the kinetic regime, and the removal of volatiles in the hydrodynamic flow beyond the gas-dust condensation determines the loss of volatiles without the effect of isotopes fractionation. The reversible nature of volatile evaporation also provides, in contrast to the kinetic regime, the preservation of part of the high-volatile components, such as water, in the planetary body, including the Moon. It follows from the essence of the model that at least a significant part of the Earth’s core is formed not by segregation of iron in the silicate-metal melt, but by evaporation and reduction of FeO in a dispersed medium, followed by deposition of clusters of elemental iron to the center of mass. This mechanism of formation of the core explains the observed excess of siderophilic elements in the Earth’s mantle. It also provides a plausible explanation for the observed character of iron isotopes fractionation (in terms of δ57Fe‰) on Earth and on the Moon. It solves the problem of the formation of iron core from initially oxide (FeO) form. The dispersed state of the substance during the period of accretion suggests that the loss of volatiles occurred during the time of accretion. Using the fact that isotopic systems: U–Pb, Rb–Sr, 129J–129Xe, 244Pu–136Xe, contain volatile components, it is possible to estimate the chronology of events in the evolution of the protoplanetary state. As a result, agreed estimates of the time of fragmentation of the primary protoplanetary condensation and formation of the embryos of the Earth and the Moon are obtained: from 10 to 40 million years, and the time of completion of the earth’s accretion and its birth as a planetary body: 110 – 130 million years after the emergence of the solar system. The presented interpretation is consistent with the fact that solid minerals on the Moon have already appeared at least 60 million years after the birth of the solar system (Barboni et al., 2017), and the metal core in the Earth and in the Moon could not have formed before 50 million years from the start of the solar system, as follows from the analysis of the Hf-W system (Kleine et al., 2009). It is shown that the hypothesis of megaimpact does not satisfy many constraints and does not create a basis for the explanation of the geochemistry of the Earth and the Moon.


2015 ◽  
Vol 95 (2) ◽  
pp. 131-139 ◽  
Author(s):  
M. Reuver ◽  
R.J. de Meijer ◽  
I.L. ten Kate ◽  
W. van Westrenen

AbstractRecent measurements of the chemical and isotopic composition of lunar samples indicate that the Moon's bulk composition shows great similarities with the composition of the silicate Earth. Moon formation models that attempt to explain these similarities make a wide variety of assumptions about the properties of the Earth prior to the formation of the Moon (the proto-Earth), and about the necessity and properties of an impactor colliding with the proto-Earth. This paper investigates the effects of the proto-Earth's mass, oblateness and internal core-mantle differentiation on its moment of inertia. The ratio of angular momentum and moment of inertia determines the stability of the proto-Earth and the binding energy, i.e. the energy needed to make the transition from an initial state in which the system is a rotating single body with a certain angular momentum to a final state with two bodies (Earth and Moon) with the same total angular momentum, redistributed between Earth and Moon. For the initial state two scenarios are being investigated: a homogeneous (undifferentiated) proto-Earth and a proto-Earth differentiated in a central metallic and an outer silicate shell; for both scenarios a range of oblateness values is investigated. Calculations indicate that a differentiated proto-Earth would become unstable at an angular momentum L that exceeds the total angular momentum of the present-day Earth–Moon system (L0) by factors of 2.5–2.9, with the precise maximum dependent on the proto-Earth's oblateness. Further limitations are imposed by the Roche limit and the logical condition that the separated Earth–Moon system should be formed outside the proto-Earth. This further limits the L values of the Earth–Moon system to a maximum of about L/L0 = 1.5, at a minimum oblateness (a/c ratio) of 1.2. These calculations provide boundary conditions for the main classes of Moon-forming models. Our results show that at the high values of L used in recent giant impact models (1.8 < L/L0 < 3.1), the proposed proto-Earths are unstable before (Cuk & Stewart, 2012) or immediately after (Canup, 2012) the impact, even at a high oblateness (the most favourable condition for stability). We conclude that the recent attempts to improve the classic giant impact hypothesis by studying systems with very high values of L are not supported by the boundary condition calculations in this work. In contrast, this work indicates that the nuclear explosion model for Moon formation (De Meijer et al., 2013) fulfills the boundary conditions and requires approximately one order of magnitude less energy than originally estimated. Hence in our view the nuclear explosion model is presently the model that best explains the formation of the Moon from predominantly terrestrial silicate material.


Examination of the Moon through large telescopes reveals a multitude of fine detail down to a scale of 1 km or less. The most prominent feature of the lunar surface is the abundance of circular craters. Many investigators agree that a great majority of these craters have been caused by explosions associated with high velocity impacts. It is further generally assumed that the majority of these high velocity impacts took place during the earliest stages of development of the present Earth-Moon system. The morphology of the Moon surface appears in dynamical considerations in the following way. We know from the work of G. H. Darwin that the Moon has been steadily retreating from the Earth. Dynamical considerations suggest that the period of rotation of the Moon on the average equals its period of revolution about the Earth. Thus when the Moon approaches the Earth, its rotation would be accelerated. Since the Moon, like the Earth, approximates to a fluid body, we should expect that a figure of the Moon would have changed in response to its changing rate of rotation. If the craters formed at a time at which the Moon’s figure was markedly different from the present, then initially circular craters would be deformed and any initially circular depression would tend to change into an elliptically shaped depression, with the major axis of the ellipse along the local meridian. Study of the observed distortions of the craters can give evidence as to the past shape of the Moon, provided the craters formed at a time when the Moon possessed a different surface ellipticity. I should like to examine the limitations the present surface structure places on the past dynamical history of the Moon. I will first review briefly calculations bearing on the dynamical evolution of the Earth-Moon system and the implications these calculations have on the past shape of the lunar surface.


1972 ◽  
Vol 47 ◽  
pp. 402-404
Author(s):  
E. L. Ruskol

According to the Radzievskij-Artemjev hypothesis of the ‘locked’ revolution of the circumplanetary swarms around the Sun, the initial Moon-to-Earth distance and the angular momentum acquired by the Earth through the accretion of the inner part of the swarm can be evaluated. Depending on the concentration of the density to the centre of the swarm we obtain the initial distance for a single protomoon in the range 15–26 Earth radii R and for a system of 3-4 protomoons in the range 3–78 R, if the outer boundary of the swarm equals to the radius of the Hill's sphere (235 R). The total angular momentum acquired by the primitive Earth-Moon system through the accretion of the swarm particles is ½–⅔ of its present value. The rest of it should be acquired from the direct accretion of interplanetary particles by the Earth. The contribution of satellite swarms into the rotation of other planets is relatively less.


Author(s):  
Ian A. Crawford ◽  
Katherine H. Joy

The lunar geological record contains a rich archive of the history of the inner Solar System, including information relevant to understanding the origin and evolution of the Earth–Moon system, the geological evolution of rocky planets, and our local cosmic environment. This paper provides a brief review of lunar exploration to-date and describes how future exploration initiatives will further advance our understanding of the origin and evolution of the Moon, the Earth–Moon system and of the Solar System more generally. It is concluded that further advances will require the placing of new scientific instruments on, and the return of additional samples from, the lunar surface. Some of these scientific objectives can be achieved robotically, for example by in situ geochemical and geophysical measurements and through carefully targeted sample return missions. However, in the longer term, we argue that lunar science would greatly benefit from renewed human operations on the surface of the Moon, such as would be facilitated by implementing the recently proposed Global Exploration Roadmap.


1990 ◽  
Vol 141 ◽  
pp. 201-202
Author(s):  
V. Protitch-Benishek

The secular quadratic term in the expression of the Moon's longitude has been introduced empirically after the conclusion that its mean motion is not constant (Halley, 1695).But, the explanation of this term and also of its numerical evaluation presented and still presents in our time great difficulties. All efforts, namely, to obtain an exact agreement between observed and theoretical value of Moon's secular acceleration were unsuccessful: the first of these two values exceeds always the second one by a very large amount. This discordance and unexplained residuals (O – C) in the mean longitude of the Moon gave rise finally to the statement that these are due to a retardation and irregularity in the Earth's rotation. But, after hardly a fifty years, this hypothesis revealed even more new difficulties and questions concerning also the problem of stability of the Earth-Moon system. It seems that there is a true reason for which this problem occurs as one of the unsolved problems of Celestial Mechanics (Brumberg and Kovalevsky, 1986; Seidelmann, 1986).


2015 ◽  
Vol 25 (05) ◽  
pp. 1550077 ◽  
Author(s):  
F. J. T. Salazar ◽  
E. E. N. Macau ◽  
O. C. Winter

In the frame of the equilateral equilibrium points exploration, numerous future space missions will require maximization of payload mass, simultaneously achieving reasonable transfer times. To fulfill this request, low-energy non-Keplerian orbits could be used to reach L4 and L5 in the Earth–Moon system instead of high energetic transfers. Previous studies have shown that chaos in physical systems like the restricted three-body Earth–Moon-particle problem can be used to direct a chaotic trajectory to a target that has been previously considered. In this work, we propose to transfer a spacecraft from a circular Earth Orbit in the chaotic region to the equilateral equilibrium points L4 and L5 in the Earth–Moon system, exploiting the chaotic region that connects the Earth with the Moon and changing the trajectory of the spacecraft (relative to the Earth) by using a gravity assist maneuver with the Moon. Choosing a sequence of small perturbations, the time of flight is reduced and the spacecraft is guided to a proper trajectory so that it uses the Moon's gravitational force to finally arrive at a desired target. In this study, the desired target will be an orbit about the Lagrangian equilibrium points L4 or L5. This strategy is not only more efficient with respect to thrust requirement, but also its time transfer is comparable to other known transfer techniques based on time optimization.


Sign in / Sign up

Export Citation Format

Share Document