high velocity impacts
Recently Published Documents


TOTAL DOCUMENTS

92
(FIVE YEARS 24)

H-INDEX

14
(FIVE YEARS 2)

Author(s):  
Clifton Stephen ◽  
B. Shivamurthy ◽  
Rajiv Selvam ◽  
Sai Rohit Behara ◽  
Abdel-Hamid I. Mourad ◽  
...  

Carbon ◽  
2021 ◽  
Author(s):  
M.L. Pereira Júnior ◽  
W.F. da Cunha ◽  
R.T. de Sousa Junior ◽  
G.D. Amvame Nze ◽  
D.S. Galvão ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4649
Author(s):  
Evaristo Santamaria Ferraro ◽  
Marina Seidl ◽  
Tom De Vuyst ◽  
Norbert Faderl

The terminal ballistics effects of Intermetallic Reactive Materials (IRM) fragments have been the object of intense research in recent years. IRM fragments flying at velocities up to 2000 m/s represent a realistic threat in modern warfare scenarios as these materials are substituting conventional solutions in defense applications. The IRM add Impact Induced Energy Release (IIER) to the mechanical interaction with a target. Therefore, the necessity of investigations on IIER to quantify potential threats to existing protection systems. In this study, Mixed Rare Earths (MRE) fragments were used due to the mechanical and pyrophoric affinity with IRM, the commercial availability and cost-effectiveness. High-Velocity Impacts (HVI) of MRE were performed at velocities ranging from 800 to 1600 m/s and recorded using a high-speed camera. 70 MREs cylindrical fragments and 24 steel fragments were shot on armour steel plates with thicknesses ranging from 2 mm to 3 mm. The influence of the impact pitch angle (α) on HVI outcomes was assessed, defining a threshold value at α of 20°. The influence of the failure modes of MRE and steel fragments on the critical impact velocities (CIV) and critical kinetic energy (Ekin crit) was evaluated. An energy-based model was developed and fitted with sufficient accuracy the Normalised EKin crit (E˜kincrit) determined from the experiments. IIER was observed in all the experiments involving MRE. From the analyses, it was observed that the IIER spreads behind the targets with velocities comparable to the residual velocities of plugs and shattered fragment.


2021 ◽  
pp. 204141962110108
Author(s):  
Zvi Rosenberg ◽  
Yaniv Vayig ◽  
Alon Malka-Markovitz

We explore the perforation process of metallic plates impacted by rigid sharp-nosed projectiles at high velocities. In particular, we are looking at the diameters of the penetration hole in the plates through a series of 2D numerical simulations, in order to check for the occurrence of cavitation in finite-thickness plates. This phenomenon has not been observed by previous workers and we were looking for its effect on the perforation process. Our simulations show that for every projectile/plate pair there is a certain impact velocity which marks the onset of cavitation. These threshold velocities depend on the normalized thickness of the plates, as well as on their effective strength. Our simulations are supported by the results from perforation tests on plates made of a low strength lead-antimony alloy. The main conclusion from our work is that analytical models for plate perforation should take into account the cavitation phenomenon, especially for high velocity impacts.


2021 ◽  
Vol 192 ◽  
pp. 106108
Author(s):  
J. Young ◽  
F. Teixeira-Dias ◽  
A. Azevedo ◽  
F. Mill

2021 ◽  
Vol 250 ◽  
pp. 01011
Author(s):  
Jorge López-Puente ◽  
Jesús Pernas-Sánchez ◽  
José Alfonso Artero-Guerrero ◽  
David Varas ◽  
Joseba Múgica ◽  
...  

The improvement of engines is one of the ways to diminish the fuel consumption in civil aircrafts, and Open Rotors engines are one of the best promises in order to achieve a sensible efficiency increment. These engines have large composite blades that could, in the event of failure, impact against the fuselage, totally or partially. In this case, composite fragments could behave as impactors. In order to design fuselages for this event and adopt these new engines in the future, it is necessary to understand the impact behaviour of a composite fragment against a deformable structure. To this end, unidirectional and woven composites fragments were impacted at high velocity (up to 150 m/s) against aluminium panels at different impact velocities. The composite fragments were made using AS4/8552 (UD) and AGP-193PW (woven) prepregs manufactured by Hexcel Composites, both using AS4 fibres and 8552 epoxy matrix. High speed video cameras were used to record the impact process and to measure both the impact and the residual velocity and hence the energy absorbed.


Sign in / Sign up

Export Citation Format

Share Document