Errors in Estimating of the F2-Layer Peak Parameters in Automatic Systems for Processing the Ionograms in the Vertical Radio Sounding of the Ionosphere under Low Solar Activity Conditions

2021 ◽  
Vol 61 (5) ◽  
pp. 703-712
Author(s):  
I. V. Krasheninnikov ◽  
L. N. Leshchenko
2019 ◽  
Vol 37 (4) ◽  
pp. 657-672
Author(s):  
Claudia M. N. Candido ◽  
Jiankui Shi ◽  
Inez S. Batista ◽  
Fabio Becker-Guedes ◽  
Emília Correia ◽  
...  

Abstract. We present a case study of unusual spread-F structures observed by ionosondes at two equatorial and low-latitude Brazilian stations – São Luís (SL: 44.2∘ W, 2.33∘ S; dip angle: −6.9∘) and Fortaleza (FZ: 38.45∘ W, 3.9∘ S; dip angle: −16∘). The irregularity structures observed from midnight to postmidnight hours of moderate solar activity (F10.7 < 97 sfu, where 1 sfu = 10−22 W m−2 s−1) have characteristics different from typical post-sunset equatorial spread F. The spread-F traces first appeared at or above the F-layer peak and gradually became well-formed mixed spread F. They also appeared as plasma depletions in the 630.0 nm airglow emissions made by a wide-angle imager located at the nearby low-latitude station Cajazeiras (CZ: 38.56∘ W, 6.87∘ S; dip angle: −21.4∘). The irregularities appeared first over FZ and later over SL, giving evidence of an unusual westward propagation or a horizontal plasma advection. The drift-mode operation available in one of the ionosondes (a digital portable sounder, DPS-4) has enabled us to analyze the horizontal drift velocities and directions of the irregularity movement. We also analyzed the neutral wind velocity measured by a Fabry–Pérot interferometer (FPI) installed at CZ and discuss its possible role in the development of the irregularities.


2010 ◽  
Author(s):  
A. I. Efimov ◽  
L. A. Lukanina ◽  
L. N. Samoznaev ◽  
V. K. Rudash ◽  
I. V. Chashei ◽  
...  

2018 ◽  
Vol 36 (2) ◽  
pp. 459-471 ◽  
Author(s):  
Amelia Naomi Onohara ◽  
Inez Staciarini Batista ◽  
Paulo Prado Batista

Abstract. The main purpose of this study is to investigate the four-peak structure observed in the low-latitude equatorial ionosphere by the FORMOSAT/COSMIC satellites. Longitudinal distributions of NmF2 (the density of the F layer peak) and hmF2 (ionospheric F2-layer peak height) averages, obtained around September equinox periods from 2007 to 2015, were submitted to a bi-spectral Fourier analysis in order to obtain the amplitudes and phases of the main waves. The four-peak structure in the equatorial and low-latitude ionosphere was present in both low and high solar activity periods. This kind of structure possibly has tropospheric origins related to the tidal waves propagating from below that modulate the E-region dynamo, mainly the eastward non-migrating diurnal tide with wavenumber 3 (DE3, E for eastward). This wave when combined with the migrating diurnal tide (DW1, W for westward) presents a wavenumber-4 (wave-4) structure under a synoptic view. Electron densities observed during 2008 and 2013 September equinoxes revealed that the wave-4 structures became more prominent around or above the F-region altitude peak (∼  300–350 km). The four-peak structure remains up to higher ionosphere altitudes (∼  800 km). Spectral analysis showed DE3 and SPW4 (stationary planetary wave with wavenumber 4) signatures at these altitudes. We found that a combination of DE3 and SPW4 with migrating tides is able to reproduce the wave-4 pattern in most of the ionospheric parameters. For the first time a study using wave variations in ionospheric observations for different altitude intervals and solar cycle was done. The conclusion is that the wave-4 structure observed at high altitudes in ionosphere is related to effects of the E-region dynamo combined with transport effects in the F region.


1977 ◽  
Vol 36 ◽  
pp. 143-180 ◽  
Author(s):  
J.O. Stenflo

It is well-known that solar activity is basically caused by the Interaction of magnetic fields with convection and solar rotation, resulting in a great variety of dynamic phenomena, like flares, surges, sunspots, prominences, etc. Many conferences have been devoted to solar activity, including the role of magnetic fields. Similar attention has not been paid to the role of magnetic fields for the overall dynamics and energy balance of the solar atmosphere, related to the general problem of chromospheric and coronal heating. To penetrate this problem we have to focus our attention more on the physical conditions in the ‘quiet’ regions than on the conspicuous phenomena in active regions.


1979 ◽  
Vol 44 ◽  
pp. 357-372
Author(s):  
Z. Švestka

The following subjects were discussed:(1)Filament activation(2)Post-flare loops.(3)Surges and sprays.(4)Coronal transients.(5)Disk vs. limb observations.(6)Solar cycle variations of prominence occurrence.(7)Active prominences patrol service.Of all these items, (1) and (2) were discussed in most detail and we also pay most attention to them in this report. Items (3) and (4) did not bring anything new when compared with the earlier invited presentations given by RUST and ZIRIN and therefore, we omit them.


Sign in / Sign up

Export Citation Format

Share Document