Physical modeling of heat and mass transfer in large crystal growth by high-temperature horizontal directional crystallization

2012 ◽  
Vol 53 (1) ◽  
pp. 83-89 ◽  
Author(s):  
V. V. Gurov ◽  
A. G. Kirdyashkin
2014 ◽  
Vol 6 ◽  
pp. 865856 ◽  
Author(s):  
Roman S. Volkov ◽  
Olga V. Vysokomornaya ◽  
Genii V. Kuznetsov ◽  
Pavel A. Strizhak

The macroscopic regularities of heat and mass transfer and phase transitions during water droplets motion through high-temperature (more than 1000 K) gases have been investigated numerically and experimentally. Water droplet evaporation rates have been established. Gas and water vapors concentrations and also temperature values of gas-vapor mixture in small neighborhood and water droplet trace have been singled out. Possible mechanisms of droplet coagulation in high-temperature gas area have been determined. Experiments have been carried out with the optical methods of two-phase gas-vapor-droplet mixtures diagnostics (“Particle Image Velocimetry” and “Interferometric Particle Imaging”) usage to assess the adequateness of developed heat and mass transfer models and the results of numerical investigations. The good agreement of numerical and experimental investigation results due to integral characteristics of water droplet evaporation has been received.


2015 ◽  
Vol 56 (69) ◽  
pp. 127-136 ◽  
Author(s):  
Pat Wongpan ◽  
Patricia J. Langhorne ◽  
David E. Dempsey ◽  
Lisa Hahn-Woernle ◽  
Zhifa Sun

AbstractAntarctic coastal sea ice often grows in water that has been supercooled by interaction with an ice shelf. In these situations, ice crystals can form at depth, rise and deposit under the sea-ice cover to form a porous layer that eventually consolidates near the base of the existing sea ice. The least consolidated portion is called the sub-ice platelet layer. Congelation growth eventually causes the sub-ice platelet layer to become frozen into the sea-ice cover as incorporated platelet ice. In this study, we simulate these processes in three dimensions using Voronoi dynamics to govern crystal growth kinetics. Platelet deposition, in situ growth and incorporation into the sea-ice cover are integrated into the model. Heat and mass transfer are controlled by diffusion. We extract and compare spatial-temporal distributions of porosity, salinity, temperature and crystallographic c-axes with observations from McMurdo Sound, Antarctica. The model captures the crystallographic structure of incorporated platelet ice as well as the topology of the sub-ice platelet layer. The solid fraction, which has previously been poorly constrained, is simulated to be ∼0.22, in good agreement with an earlier estimate of 0.25 ± 0.06. This property of the sub-ice platelet layer is important for biological processes, and for the freeboard-thickness relationship around Antarctica.


Sign in / Sign up

Export Citation Format

Share Document