Role of sublattices in the formation of the electronic structure and chemical bonding in a Zn2SiO4 crystal with a defect chalcopyrite lattice

2012 ◽  
Vol 53 (1) ◽  
pp. 35-38 ◽  
Author(s):  
Yu. M. Basalaev ◽  
S. A. Marinova
2016 ◽  
Vol 18 (45) ◽  
pp. 30946-30953 ◽  
Author(s):  
Damien Magne ◽  
Vincent Mauchamp ◽  
Stéphane Célérier ◽  
Patrick Chartier ◽  
Thierry Cabioc'h

The role of the surface groups in chemical bonding in two dimensional Ti3C2is evidenced at the nano-object level.


2008 ◽  
Vol 1128 ◽  
Author(s):  
Yuri Grin ◽  
Arndt Simon ◽  
Alim Ormeci

AbstractLaves phases comprise a large group of intermetallic compounds with general composition AB2 and multi-component derivatives. The crystal structures of Laves phases are often regarded as closest packing of spheres. This observation, beginning with very early work on Laves phases, has led many researchers over the years, to emphasize the role of geometrical factors in the formation of Laves phases. In order to develop a firm understanding of chemical bonding in Laves phases and assess the importance of geometrical factors, we undertake a first-principles-electronic structure-based chemical bonding analysis for several representatives. As a first step towards this goal we concentrate on the K-Cs system which contains the Laves phase CsK2 and the hexagonal Cs6K7 compounds. In such alkali-metal-only compounds it is generally expected that chemical bonding effects are minimal. Atom volumina and charge transfer investigations reported here, however, suggest that even in alkali metal-alkali metal Laves phases chemical bonding plays a non-negligible role.


2021 ◽  
Vol 23 (12) ◽  
pp. 7418-7425
Author(s):  
Magdalena Laurien ◽  
Himanshu Saini ◽  
Oleg Rubel

We calculate the band alignment of the newly predicted phosphorene-like puckered monolayers with G0W0 according to the electron affinity rule and examine trends in the electronic structure. Our results give guidance for heterojunction design.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
A. D’Elia ◽  
S. J. Rezvani ◽  
N. Zema ◽  
F. Zuccaro ◽  
M. Fanetti ◽  
...  

AbstractWe present and discuss the role of nanoparticles size and stoichiometry over the local atomic environment of nanostructured VOx films. The samples have been characterized in situ using X-ray absorption near-edge structure (XANES) spectroscopy identifying the stoichiometry-dependent fingerprints of disordered atomic arrangement. In vanadium oxides, the ligand atoms arrange according to a distorted octahedral geometry depending on the oxidation state, e.g. trigonal distortion in V2O3 and tetragonal distortion in bulk VO2. We demonstrate, taking VO2 as a case study, that as a consequence of the nanometric size of the nanoparticles, the original ligands symmetry of the bulk is broken resulting in the coexistence of a continuum of distorted atomic conformations. The resulting modulation of the electronic structure of the nanostructured VOx as a function of the oxygen content reveals a stoichiometry-dependent increase of disorder in the ligands matrix. This work shows the possibility to produce VOx nanostructured films accessing new disordered phases and provides a unique tool to investigate the complex matter.


2001 ◽  
Vol 3 (5) ◽  
pp. 539-544 ◽  
Author(s):  
Vladlen P. Zhukov ◽  
Veronika M. Zainullina ◽  
Vladimir G. Zubkov ◽  
Alexander P. Tyutyunnik ◽  
Tatiana A. Denisova

Sign in / Sign up

Export Citation Format

Share Document