conduction band
Recently Published Documents


TOTAL DOCUMENTS

1988
(FIVE YEARS 205)

H-INDEX

87
(FIVE YEARS 10)

2022 ◽  
Vol 12 (1) ◽  
pp. 429
Author(s):  
Muhazri Abd Mutalib ◽  
Norasikin Ahmad Ludin ◽  
Mohd Sukor Su’ait ◽  
Matthew Davies ◽  
Suhaila Sepeai ◽  
...  

High-performance electron transport layer (ETL) anode generally needs to form a uniform dense layer with suitable conduction band position and good electron transport properties. The TiO2 photoanode is primarily applied as the ETL because it is low-cost, has diverse thin-film preparation methods and has good chemical stability. However, pure TiO2 is not an ideal ETL because it lacks several important criteria, such as low conductivity and conduction band mismatch with compositional-tailored perovskite. Thus, TiO2 is an inefficient photo-anode or ETL for high-performance perovskite devices. In this study, sulfur as dopant in the TiO2 photo-anode thin film is used to fabricate solid-state planar perovskite solar cells in relatively high humidity (40–50%). The deposited S-doped thin film improves the power conversion efficiency (PCE) of the device to 6.0%, with the un-doped TiO2 producing a PCE of 5.1% in the best device. Improvement in PCE is due to lower recombination and higher photocurrent density, resulting in 18% increase in PCE (5.1–6.0%).


Author(s):  
Shuping Guo ◽  
Shashwat Anand ◽  
Madison K. Brod ◽  
Yongsheng Zhang ◽  
G. Jeffrey Snyder

Semiconducting half-Heusler (HH, XYZ) phases are promising thermoelectric materials owing to their versatile electronic properties. Because the valence band of half-Heusler phases benefits from the valence band extrema at several...


Author(s):  
В.П. Смагин ◽  
А.А. Исаева ◽  
Е.А. Шелепова

Nanoscale particles ZnS:Nd3+, CdS:Nd3+ and (Zn,Cd)S:Nd3+ were synthesized and doped in a polymerizing methyl methacrylate medium during the production of optically transparent polyacrylate composites of the composition PMMA/ZnS:Nd3+, PMMA/CdS:Nd3+ and PMMA/(Zn,Cd)S:Nd3+. The excitation of photoluminescence (FL) and FL of semiconductor structures in composites is associated with the transition of electrons from the valence band to the conduction band and to the levels of structural defects of semiconductor particles, followed by recombination at these levels. Based on changes in the excitation spectra of FL and FL composites, assumptions are made about the structure of particles, the distribution of Nd3+ ions in it and their effect on photoluminescence.


2021 ◽  
Vol 45 (6) ◽  
pp. 431-437
Author(s):  
Ahmed Redha Latrous ◽  
Ramdane Mahamdi ◽  
Naima Touafek ◽  
Marcel Pasquinelli

Among the causes of the degradation of the performance of kesterite-based solar cells is the wrong choice of the n-type buffer layer which has direct repercussions on the unfavorable band alignment, the conduction band offset (CBO) at the interface of the absorber/buffer junction which is one of the major causes of lower VOC. In this work, the effect of CBO at the interface of the junction (CZTS/Cd(1-x)ZnxS) as a function of the x composition of Zn with respect to (Zn+Cd) is studied using the SCAPS-1D simulator package. The obtained results show that the performance of the solar cells reaches a maximum values (Jsc = 13.9 mA/cm2, Voc = 0.757 V, FF = 65.6%, ɳ = 6.9%) for an optimal value of CBO = -0.2 eV and Zn proportion of the buffer x = 0.4 (Cd0.6Zn0.4S). The CZTS solar cells parameters are affected by the thickness and the concentration of acceptor carriers. The best performances are obtained for CZTS absorber layer, thichness (d = 2.5 µm) and (ND = 1016 cm-3). The obtained results of optimizing the electron work function of the back metal contact exhibited an optimum value at 5.7 eV with power conversion efficiency of 13.1%, Voc of 0.961 mV, FF of 67.3% and Jsc of 20.2 mA/cm2.


2021 ◽  
Vol 32 (2) ◽  
pp. 1-5
Author(s):  
Agus Ismangil ◽  
Fatimah Arofiati Noor ◽  
Toto Winata

Chemical solution deposition (CSD) is a technique for making a film by keeping synthetic arrangements on the outer layer of the substrate. The outcomes show that the band gap energy of the LiTaO3 film is 1 eV. Electrons are more effectively invigorated to the valence band than to the conduction band on the grounds that the energy required is not excessively huge. Niobium-doped LiTaO3 film has a band gap energy of 1.15 eV. A large amount of energy is needed for electrons to be energized from the valence band to the conduction band. The rubidium-doped LiTaO3 film has a band gap energy of 1.30 eV.


Author(s):  
Юрий Александрович Кузнецов ◽  
Михаил Николаевич Лапушкин

Проведен расчет плотности состояний различной толщины 2D -слоев интерметаллида NaAu. 2D -слоев интерметаллида NaAu моделировались суперячейки NaAu (111) 2 х 2 х 2. Для монослойного 2D -слоя интерметаллида NaAu установлено наличие запрещенной зоны с шириной 1,87 эВ. Увеличение толщины толщины 2D -слоев интерметаллида NaAu до двух монослоев показал уменьшение ширины запрещенной зоны до 0,81эВ. Дальнейшее увеличение толщины 2D -слоев интерметаллида NaAu приводит к исчезновению запрещенной зоны, что указывает на переход полупроводник - металл для 2D -слоя интерметаллида NaAu толщиной три монослоя. Валентная зона 2D -слоя интерметаллида NaAu сформирована в основном Au 5d электронами, с незначительным вкладом Au 6s и Au 6p электронов. Зона проводимости NaAu образована в основном Au 6р электронами с незначительным вкладом электронов Na 3 s . The calculation of the density of states of various thicknesses of the 2D -layers of the intermetallic compound has been carried out. 2D -layers of intermetallic compound NaAu are simulated by supercells NaAu (111) 2 x 2 x 2. For a monolayer 2D -layer of an intermetallic compound NaAu the presence of a bandgap with a width of 1,87 eV has been established. An increase in the thickness of the 2D -layers of the intermetallic compound NaAu to two monolayers showed a decrease in the bandgap to 0,81 eV. A further increase in the thickness of the 2D -layers of the intermetallic compound NaAu leads to the disappearance of the band gap, which indicates a semiconductor-metal transition for the 2D -layer of the intermetallic compound NaAu with a thickness of three monolayers. The valence band of the 2D -layer of the intermetallic compound NaAu is formed mainly by Au 5d electrons, with an insignificant contribution from Au 6s and Au 6p electrons. The conduction band of NaAu is formed mainly by Au 6p electrons with an insignificant contribution of electrons Na 3s .


2021 ◽  
Author(s):  
Danijela Danilović ◽  
Dusan Bozanic ◽  
Gustavo A. Garcia ◽  
Laurent Nahon ◽  
Una Stamenović ◽  
...  

Abstract The angle-resolved photoelectron spectroscopy of isolated silver sulfide nanoparticles was carried out by using velocity map imaging technique at the DESIRS beamline of SOLEIL synchrotron facility. The reported spectroscopy results were obtained after interaction of the synchrotron radiation with a polydisperse aerosol produced from aqueous dispersion of silver sulfide particles, approximately 16 nm in diameter. The photoelectron and UV-Vis-NIR absorption spectra were used to estimate the maximum energy of the valance- and the minimum energy of the conduction-band of the nanoparticles. With respect to the vacuum level, the obtained values were found to be 5.5±0.1 eV and 4.5±0.1 eV for the valence band maximum and conduction band minimum, respectively. The dependence of the asymmetry parameter on the electron energy along the silver sulfide valence band showed an onset of inelastic scattering at ~1 eV electron kinetic energy.


Author(s):  
Afam Uzorka

In this paper the details of photoconductivity experiments on K crystal are presented. Photoconductivity measurements were inconclusive as to whether or not there was a current flowing during the 850 nm excitation of a feldspar sample. However there was a clear current when exciting the same sample with 515 nm light, but there was a complex relationship between the magnitude of the current and the number of emission photons counted. A model was developed to explain the photoconductivity results where electrons migrate through the conduction band aided by thermal excitation and tunneling.


2021 ◽  
Author(s):  
◽  
William Holmes-Hewett

<p>In this thesis we investigate the transport properties of SmN, NdN and GdN, members of the rare earth nitride series of intrinsic ferromagnetic semiconductors. GdN is the central member of the series with seven occupied majority spin 4f states and seven empty minority spin 4f states. Both the filled and unfilled 4f states are some few eV away from the conduction and valence band extrema, resulting in transport properties which are dominated by the extended Gd 5d band. The half filled 4f shell, with zero net orbital angular momentum, furthermore simplifies calculations and as such GdN is the most studied both experimentally and in theory. As one moves to lighter members, the filled 4f states become unfilled states in the conduction band and the 4f shell now has a net orbital angular momentum. Calculations concerning these members are now significantly more complicated, and as such there exists a wide range of predictions concerning the conduction band minima in the lighter rare earth nitrides. To inform the current theoretical and experimental literature we report on three studies concerning the transport properties of SmN, NdN and GdN.  To begin we report on the anomalous Hall effect in SmN, NdN and GdN. Under the symmetry of the rock-salt rare earth nitrides the magnitude of the anomalous Hall effect can imply the wave function of the conduction electron (i.e. d or f band). Measurements of the anomalous Hall effect in moderately doped samples are used to show the conduction channel in SmN and NdN is an f band or hybridised f/d band. Furthermore the sign of the anomalous Hall effect can be used to determine the orientation of the spin magnetic moment of the conduction electrons. Optical measurements of SmN, NdN and GdN films are then reported. Optical measurements provide a probe of the band structure of a material via direct transitions between the valence and conduction bands. Measurements of reflectivity and transmission on undoped SmN and NdN films were used to locate the unfilled majority spin 4f bands which form the conduction band minima in each material. Finally a preliminary study of heavily doped SmN, NdN and GdN is discussed. Structural measurements show a reduced lattice parameter while transport results find a significantly enhanced conductivity in heavily doped films. The Curie temperature is found to be enhanced and optical measurements show an increased absorption and red-shifted optical edge in doped films. The superconducting state of SmN is discussed and it is shown only to be present in moderately doped films, i.e. superconductivity is not present in undoped or degenerately doped SmN, within our measurement limits.</p>


Sign in / Sign up

Export Citation Format

Share Document