Sulfate-reducing bacteria in the microbial community of acidic drainage from a gold deposit tailing storage

Microbiology ◽  
2017 ◽  
Vol 86 (2) ◽  
pp. 286-288 ◽  
Author(s):  
A. V. Mardanov ◽  
A. V. Beletskii ◽  
D. A. Ivasenko ◽  
N. V. Pimenov ◽  
O. V. Karnachuk ◽  
...  
2019 ◽  
Vol 21 (7) ◽  
pp. 1193-1203 ◽  
Author(s):  
Christopher K. Bartlett ◽  
Robin M. Slawson ◽  
Neil R. Thomson

Recovery of BTEX biodegradation, sulfate-reducing bacteria and associated community profile following exposure to persulfate in a continuous flow system.


2018 ◽  
Vol 2 (2) ◽  
pp. 1
Author(s):  
Tyas Nyonita Punjungsari

The biofilm is a microbial community structure formed on the zeolite surface in a sulfate reduction bioreactor and Cu deposition using a SRB consortium . The biofilm soluble microbial solvent is expected to have the capability in sulfate reduction and Cu deposition. Characterization of isolates is required for the optimization of pure culture . The aim of this study is to isolate and characterize the biofilm sulfate reducing bacteria in the sulfate reduction bioreactor and the precipitation of Cu in Batch Culture by a consortium of Sulfate Reducing Bacteria. The method used in this study cultivation was done by using postgate B medium, isolation was done by diluting biofilm on NaCl salt, bacteria grown on NB and postgate B media, characterization done by morphology and biochemistry. There were 3 isolates of B1 (Metylobacterium ), B3 ( Desulfucoccus ), and B2 ( Desulfobacter ). B3 ( Desulfococcus) has the best ability to reduce sulfate and Cu precipitation.Keywords : Sulfur Reducing Bacteria (SRB), Biofilm, Sulfate, Cu. Received: 26 August, 2017; Accepter: 10 September, 2017 


Author(s):  
Avishek Dutta ◽  
Fernando Valle ◽  
Thomas Goldman ◽  
Jeff Keating ◽  
Ellen Burke ◽  
...  

Sulfate-reducing bacteria (SRB) are one of the main sources of biogenic H 2 S generation in oil reservoirs. Excess H 2 S production in these systems leads to oil biosouring, which causes operational risks, health hazards and can increase the cost of refining crude oil. Nitrate salts are often added to the system to suppress sulfidogenesis. Because SRB populations can persist in biofilms even after nitrate treatment, identifying shifts in the sessile community is crucial for successful mitigation. However, sampling the sessile community is hampered by its inaccessibility. Here we use the results of a long-term (148 days) ex situ experiment to identify particular sessile community members from observations of the sample waste stream. Microbial community structure was determined for 731 samples across twenty bioreactors using 16S rRNA gene sequencing. By associating microbial community structure with specific steps in the mitigation process, we could distinguish between taxa associated with H 2 S production and mitigation. After initiation of nitrate treatment, certain SRB populations increased in the planktonic community during critical time points, indicating the dissociation of SRBs from the biofilm. Predicted relative abundances of the dissimilatory sulfate reduction pathway also increased during the critical time points. Here, by analyzing the planktonic community structure, we describe a general method that uses high-throughput amplicon sequencing, metabolic inferences, and cell abundance data to identify successful biofilm mitigation. We anticipate that our approach is also applicable to other systems where biofilms must be mitigated but cannot be easily sampled. Importance Microbial biofilms are commonly present in many industrial processes and can negatively impact performance and safety. Within the oil industry, subterranean biofilms cause biosouring with implications for oil quality, cost, occupational health, and the environment. Because these biofilms cannot be directly sampled, methods are needed to indirectly assess the success of mitigation measures. This study demonstrates how the planktonic microbial community can be used to assess the dissociation of SRB-containing biofilms. We found that an increase in the abundance of a specific SRB population in the effluent after nitrate treatment can be used as a potential indicator for the successful mitigation of biofilm-forming SRBs. Moreover, a method for determining critical time points for detecting potential indicators is suggested. This study expands our knowledge in improving mitigation strategies for biosouring and could have broader implications in other systems where biofilms lead to adverse consequences.


2015 ◽  
Vol 12 (10) ◽  
pp. 2847-2860 ◽  
Author(s):  
I. Bar-Or ◽  
E. Ben-Dov ◽  
A. Kushmaro ◽  
W. Eckert ◽  
O. Sivan

Abstract. Microbial methane oxidation is the primary control on the emission of the greenhouse gas methane into the atmosphere. In terrestrial environments, aerobic methanotrophic bacteria are largely responsible for this process. In marine sediments, a coupling of anaerobic oxidation of methane (AOM) with sulfate reduction, often carried out by a consortium of anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria, consumes almost all methane produced within those sediments. Motivated by recent evidence for AOM with iron(III) in Lake Kinneret sediments, the goal of the present study was to link the geochemical gradients in the lake porewater to the microbial community structure. Screening of archaeal 16S rRNA gene sequences revealed a shift from hydrogenotrophic to acetoclastic methanogens with depth. The observed changes in microbial community structure suggest possible direct and indirect mechanisms for the AOM coupled to iron reduction in deep sediments. The percentage of members of the Nitrospirales order increased with depth, suggesting their involvement in iron reduction together with Geobacter genus and "reverse methanogenesis". An indirect mechanism through sulfate and ANME seems less probable due to the absence of ANME sequences. This is despite the abundant sequences related to sulfate-reducing bacteria (Deltaproteobacteria) together with the occurrence of dsrA in the deep sediment that could indicate the production of sulfate (disproportionation) from S0 for sulfate-driven AOM. The presence of the functional gene pmoA in the deep anoxic sediment together with sequences related to Methylococcales suggests the existence of a second unexpected indirect pathway – aerobic methane oxidation pathway in an anaerobic environment.


2018 ◽  
Vol 2 (2) ◽  
pp. 1
Author(s):  
Tyas Nyonita Punjungsari

The biofilm is a microbial community structure formed on the zeolite surface in a sulfate reduction bioreactor and Cu deposition using a SRB consortium . The biofilm soluble microbial solvent is expected to have the capability in sulfate reduction and Cu deposition. Characterization of isolates is required for the optimization of pure culture . The aim of this study is to isolate and characterize the biofilm sulfate reducing bacteria in the sulfate reduction bioreactor and the precipitation of Cu in Batch Culture by a consortium of Sulfate Reducing Bacteria. The method used in this study cultivation was done by using postgate B medium, isolation was done by diluting biofilm on NaCl salt, bacteria grown on NB and postgate B media, characterization done by morphology and biochemistry. There were 3 isolates of B1 (Metylobacterium ), B3 ( Desulfucoccus ), and B2 ( Desulfobacter ). B3 ( Desulfococcus) has the best ability to reduce sulfate and Cu precipitation.Keywords : Sulfur Reducing Bacteria (SRB), Biofilm, Sulfate, Cu. Received: 26 August, 2017; Accepter: 10 September, 2017


2021 ◽  
Vol 12 ◽  
Author(s):  
Ying Lv ◽  
Chuiyun Tang ◽  
Xingyu Liu ◽  
Mingjiang Zhang ◽  
Bowei Chen ◽  
...  

Uranium pollution in tailings and its decay products is a global environmental problem. It is of great significance to use economical and efficient technologies to remediate uranium-contaminated soil. In this study, the effects of pH, temperature, and inoculation volume on stabilization efficiency and microbial community response of uranium tailings were investigated by a single-factor batch experiment in the remediation process by mixed sulfate-reducing bacteria (SRB) and phosphate-solubilizing bacteria (PSB, Pantoea sp. grinm-12). The results showed that the optimal parameters of microbial stabilization by mixed SRB-PSB were pH of 5.0, temperature of 25°C, and inoculation volume of 10%. Under the optimal conditions, the uranium in uranium tailings presented a tendency to transform from the acid-soluble state to residual state. In addition, the introduction of exogenous SRB-PSB can significantly increase the richness and diversity of endogenous microorganisms, effectively maintain the reductive environment for the microbial stabilization system, and promote the growth of functional microorganisms, such as sulfate-reducing bacteria (Desulfosporosinus and Desulfovibrio) and iron-reducing bacteria (Geobacter and Sedimentibacter). Finally, PCoA and CCA analyses showed that temperature and inoculation volume had significant effects on microbial community structure, and the influence order of the three environmental factors is as follows: inoculation volume > temperature > pH. The outcomes of this study provide theoretical support for the control of uranium in uranium-contaminated sites.


2006 ◽  
Vol 54 (8) ◽  
pp. 111-119 ◽  
Author(s):  
N. Miyazato ◽  
R. Yamamoto-Ikemoto ◽  
S. Takamatsu

The growth of sulfate reducing bacteria (SRB) and filamentous sulfur bacteria was monitored on a laboratory scale in activated sludge reactors using acetate and peptone as the artificial wastewater. When the artificial wastewater contained acetate and peptone, filamentous bacteria increased in the sludge and the SVI values increased. There was a good correlation between sulfate reducing activity and sulfur oxidation activity in the produced sludge. The microbial community change of filamentous sulfur bacteria and sulfate reducing bacteria was analyzed using the fluorescent in situ hybridization (FISH) method. The tendency for the growth of filamentous sulfur bacteria Thiothrix eikelboomii following the growth of SRB was observed. The percentage of SRB385- hybridized cells and DNMA657-hybridized cells found in the total cell area increased from 2–3% to 7–10% when the filamentous bulking occurred.


2020 ◽  
Vol 82 (5) ◽  
pp. 11-20
Author(s):  
D.R. Abdulina ◽  
◽  
L.M. Purish ◽  
G.O. Iutynska ◽  
◽  
...  

The studies of the carbohydrate composition of the sulfate-reducing bacteria (SRB) biofilms formed on the steel surface, which are a factor of microbial corrosion, are significant. Since exopolymers synthesized by bacteria could activate corrosive processes. The aim of the study was to investigate the specificity of commercial lectins, labeled with colloidal gold to carbohydrates in the biofilm exopolymeric matrix produced by the corrosive-relevant SRB strains from man-caused ecotopes. Methods. Microbiological methods (obtaining of the SRB biofilms during cultivation in liquid Postgate B media under microaerophilic conditions), biochemical methods (lectin-binding analysis of 10 commercial lectins, labeled with colloidal gold), transmission electron microscopy using JEM-1400 JEOL. Results. It was shown using transmission electron microscopy that the binding of lectins with carbohydrates in the biofilm of the studied SRB strains occurred directly in the exopolymerіс matrix, as well as on the surfaces of bacterial cells, as seen by the presence of colloidal gold particles. For detection of the neutral carbohydrates (D-glucose and D-mannose) in the biofilm of almost all studied bacterial strains PSA lectin was the most specific. This lectin binding in biofilms of Desulfotomaculum sp. К1/3 and Desulfovibrio sp. 10 strains was higher in 90.8% and 94.4%, respectively, then for ConA lectin. The presence of fucose in the SRB biofilms was detected using LABA lectin, that showed specificity to the biofilm EPS of all the studied strains. LBA lectin was the most specific to N-аcetyl-D-galactosamine for determination of amino sugars in the biofilm. The amount of this lectin binding in D. vulgaris DSM644 biofilm was 30.3, 10.1 and 9.3 times higher than SBA, SNA and PNA lectins, respectively. STA, LVA and WGA lectins were used to detect the N-acetyl-Dglucosamine and sialic acid in the biofilm. WGA lectin showed specificity to N-acetyl-D-glucosamine in the biofilm of all the studied SRB; maximum number of bounded colloidal gold particles (175 particles/μm2) was found in the Desulfotomaculum sp. TC3 biofilm. STA lectin was interacted most actively with N-acetyl-D-glucosamine in Desulfotomaculum sp. TC3 and Desulfomicrobium sp. TC4 biofilms. The number of bounded colloidal gold particles was in 9.2 and 7.4 times higher, respectively, than using LVA lectin. The lowest binding of colloidal gold particles was observed for LVA lectin. Conclusions. It was identified the individual specificity of the 10 commercial lectins to the carbohydrates of biofilm matrix on the steel surface, produced by SRB. It was estimated that lectins with identical carbohydrates specificity had variation in binding to the biofilm carbohydrates of different SRB strains. Establishing of the lectin range selected for each culture lead to the reduction of the scope of studies and labor time in the researching of the peculiarities of exopolymeric matrix composition of biofilms formed by corrosiverelevant SRB.


Sign in / Sign up

Export Citation Format

Share Document