scholarly journals Methane-related changes in prokaryotes along geochemical profiles in sediments of Lake Kinneret (Israel)

2015 ◽  
Vol 12 (10) ◽  
pp. 2847-2860 ◽  
Author(s):  
I. Bar-Or ◽  
E. Ben-Dov ◽  
A. Kushmaro ◽  
W. Eckert ◽  
O. Sivan

Abstract. Microbial methane oxidation is the primary control on the emission of the greenhouse gas methane into the atmosphere. In terrestrial environments, aerobic methanotrophic bacteria are largely responsible for this process. In marine sediments, a coupling of anaerobic oxidation of methane (AOM) with sulfate reduction, often carried out by a consortium of anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria, consumes almost all methane produced within those sediments. Motivated by recent evidence for AOM with iron(III) in Lake Kinneret sediments, the goal of the present study was to link the geochemical gradients in the lake porewater to the microbial community structure. Screening of archaeal 16S rRNA gene sequences revealed a shift from hydrogenotrophic to acetoclastic methanogens with depth. The observed changes in microbial community structure suggest possible direct and indirect mechanisms for the AOM coupled to iron reduction in deep sediments. The percentage of members of the Nitrospirales order increased with depth, suggesting their involvement in iron reduction together with Geobacter genus and "reverse methanogenesis". An indirect mechanism through sulfate and ANME seems less probable due to the absence of ANME sequences. This is despite the abundant sequences related to sulfate-reducing bacteria (Deltaproteobacteria) together with the occurrence of dsrA in the deep sediment that could indicate the production of sulfate (disproportionation) from S0 for sulfate-driven AOM. The presence of the functional gene pmoA in the deep anoxic sediment together with sequences related to Methylococcales suggests the existence of a second unexpected indirect pathway – aerobic methane oxidation pathway in an anaerobic environment.

2018 ◽  
Vol 2 (2) ◽  
pp. 1
Author(s):  
Tyas Nyonita Punjungsari

The biofilm is a microbial community structure formed on the zeolite surface in a sulfate reduction bioreactor and Cu deposition using a SRB consortium . The biofilm soluble microbial solvent is expected to have the capability in sulfate reduction and Cu deposition. Characterization of isolates is required for the optimization of pure culture . The aim of this study is to isolate and characterize the biofilm sulfate reducing bacteria in the sulfate reduction bioreactor and the precipitation of Cu in Batch Culture by a consortium of Sulfate Reducing Bacteria. The method used in this study cultivation was done by using postgate B medium, isolation was done by diluting biofilm on NaCl salt, bacteria grown on NB and postgate B media, characterization done by morphology and biochemistry. There were 3 isolates of B1 (Metylobacterium ), B3 ( Desulfucoccus ), and B2 ( Desulfobacter ). B3 ( Desulfococcus) has the best ability to reduce sulfate and Cu precipitation.Keywords : Sulfur Reducing Bacteria (SRB), Biofilm, Sulfate, Cu. Received: 26 August, 2017; Accepter: 10 September, 2017 


Author(s):  
Avishek Dutta ◽  
Fernando Valle ◽  
Thomas Goldman ◽  
Jeff Keating ◽  
Ellen Burke ◽  
...  

Sulfate-reducing bacteria (SRB) are one of the main sources of biogenic H 2 S generation in oil reservoirs. Excess H 2 S production in these systems leads to oil biosouring, which causes operational risks, health hazards and can increase the cost of refining crude oil. Nitrate salts are often added to the system to suppress sulfidogenesis. Because SRB populations can persist in biofilms even after nitrate treatment, identifying shifts in the sessile community is crucial for successful mitigation. However, sampling the sessile community is hampered by its inaccessibility. Here we use the results of a long-term (148 days) ex situ experiment to identify particular sessile community members from observations of the sample waste stream. Microbial community structure was determined for 731 samples across twenty bioreactors using 16S rRNA gene sequencing. By associating microbial community structure with specific steps in the mitigation process, we could distinguish between taxa associated with H 2 S production and mitigation. After initiation of nitrate treatment, certain SRB populations increased in the planktonic community during critical time points, indicating the dissociation of SRBs from the biofilm. Predicted relative abundances of the dissimilatory sulfate reduction pathway also increased during the critical time points. Here, by analyzing the planktonic community structure, we describe a general method that uses high-throughput amplicon sequencing, metabolic inferences, and cell abundance data to identify successful biofilm mitigation. We anticipate that our approach is also applicable to other systems where biofilms must be mitigated but cannot be easily sampled. Importance Microbial biofilms are commonly present in many industrial processes and can negatively impact performance and safety. Within the oil industry, subterranean biofilms cause biosouring with implications for oil quality, cost, occupational health, and the environment. Because these biofilms cannot be directly sampled, methods are needed to indirectly assess the success of mitigation measures. This study demonstrates how the planktonic microbial community can be used to assess the dissociation of SRB-containing biofilms. We found that an increase in the abundance of a specific SRB population in the effluent after nitrate treatment can be used as a potential indicator for the successful mitigation of biofilm-forming SRBs. Moreover, a method for determining critical time points for detecting potential indicators is suggested. This study expands our knowledge in improving mitigation strategies for biosouring and could have broader implications in other systems where biofilms lead to adverse consequences.


2014 ◽  
Vol 11 (6) ◽  
pp. 9813-9852 ◽  
Author(s):  
I. Bar Or ◽  
E. Ben-Dov ◽  
A. Kushmaro ◽  
W. Eckert ◽  
O. Sivan

Abstract. Microbial methane oxidation process (methanotrophy) is the primary control on the emission of the greenhouse gas methane (CH4) to the atmosphere. In terrestrial environments, aerobic methanotrophic bacteria are mainly responsible for oxidizing the methane. In marine sediments the coupling of the anaerobic oxidation of methane (AOM) with sulfate reduction, often by a consortium of anaerobic methanotrophic archaea (ANME) and sulfate reducing bacteria, was found to consume almost all the upward diffusing methane. Recently, we showed geochemical evidence for AOM driven by iron reduction in Lake Kinneret (LK) (Israel) deep sediments and suggested that this process can be an important global methane sink. The goal of the present study was to link the geochemical gradients found in the porewater (chemical and isotope profiles) with possible changes in microbial community structure. Specifically, we examined the possible shift in the microbial community in the deep iron-driven AOM zone and its similarity to known sulfate driven AOM populations. Screening of archaeal 16S rRNA gene sequences revealed Thaumarchaeota and Euryarchaeota as the dominant phyla in the sediment. Thaumarchaeota, which belongs to the family of copper containing membrane-bound monooxgenases, increased with depth while Euryarchaeota decreased. This may indicate the involvement of Thaumarchaeota, which were discovered to be ammonia oxidizers but whose activity could also be linked to methane, in AOM in the deep sediment. ANMEs sequences were not found in the clone libraries, suggesting that iron-driven AOM is not through sulfate. Bacterial 16S rRNA sequences displayed shifts in community diversity with depth. Proteobacteria and Chloroflexi increased with depth, which could be connected with their different dissimilatory anaerobic processes. The observed changes in microbial community structure suggest possible direct and indirect mechanisms for iron-driven AOM in deep sediments.


2018 ◽  
Vol 2 (2) ◽  
pp. 1
Author(s):  
Tyas Nyonita Punjungsari

The biofilm is a microbial community structure formed on the zeolite surface in a sulfate reduction bioreactor and Cu deposition using a SRB consortium . The biofilm soluble microbial solvent is expected to have the capability in sulfate reduction and Cu deposition. Characterization of isolates is required for the optimization of pure culture . The aim of this study is to isolate and characterize the biofilm sulfate reducing bacteria in the sulfate reduction bioreactor and the precipitation of Cu in Batch Culture by a consortium of Sulfate Reducing Bacteria. The method used in this study cultivation was done by using postgate B medium, isolation was done by diluting biofilm on NaCl salt, bacteria grown on NB and postgate B media, characterization done by morphology and biochemistry. There were 3 isolates of B1 (Metylobacterium ), B3 ( Desulfucoccus ), and B2 ( Desulfobacter ). B3 ( Desulfococcus) has the best ability to reduce sulfate and Cu precipitation.Keywords : Sulfur Reducing Bacteria (SRB), Biofilm, Sulfate, Cu. Received: 26 August, 2017; Accepter: 10 September, 2017


2018 ◽  
Vol 20 (4) ◽  
pp. 673-685 ◽  
Author(s):  
Tatiana A. Vishnivetskaya ◽  
Haiyan Hu ◽  
Joy D. Van Nostrand ◽  
Ann M. Wymore ◽  
Xiaohang Xu ◽  
...  

Sulfate-reducing bacteria and methanogens are the primary Hg-methylators in Chinese rice paddies.


2020 ◽  
Vol 11 ◽  
Author(s):  
Tingting Zhang ◽  
Xi Xiao ◽  
Songze Chen ◽  
Jing Zhao ◽  
Zongheng Chen ◽  
...  

Cold seep ecosystems are developed from methane-rich fluids in organic rich continental slopes, which are the source of various dense microbial and faunal populations. Extensive studies have been conducted on microbial populations in this unique environment; most of them were based on DNA, which could not resolve the activity of extant organisms. In this study, RNA and DNA analyses were performed to evaluate the active archaeal and bacterial communities and their network correlations, particularly those participating in the methane cycle at three sites of newly developed cold seeps in the northern South China Sea (nSCS). The results showed that both archaeal and bacterial communities were significantly different at the RNA and DNA levels, revealing a higher abundance of methane-metabolizing archaea and sulfate-reducing bacteria in RNA sequencing libraries. Site ROV07-01, which exhibited extensive accumulation of deceased Calyptogena clam shells, was highly developed, and showed diverse and active anaerobic archaeal methanotrophs (ANME)-2a/b and sulfate-reducing bacteria from RNA libraries. Site ROV07-02, located near carbonate crusts with few clam shell debris, appeared to be poorly developed, less anaerobic and less active. Site ROV05-02, colonized by living Calyptogena clams, could likely be intermediary between ROV07-01 and ROV07-02, showing abundant ANME-2dI and sulfate-reducing bacteria in RNA libraries. The high-proportions of ANME-2dI, with respect to ANME-2dII in the site ROV07-01 was the first report from nSCS, which could be associated with recently developed cold seeps. Both ANME-2dI and ANME-2a/b showed close networked relationships with sulfate-reducing bacteria; however, they were not associated with the same microbial operational taxonomic units (OTUs). Based on the geochemical gradients and the megafaunal settlements as well as the niche specificities and syntrophic relationships, ANMEs appeared to change in community structure with the evolution of cold seeps, which may be associated with the heterogeneity of their geochemical processes. This study enriched our understanding of more active sulfate-dependent anaerobic oxidation of methane (AOM) in poorly developed and active cold seep sediments by contrasting DNA- and RNA-derived community structure and activity indicators.


2014 ◽  
Vol 81 (4) ◽  
pp. 1286-1296 ◽  
Author(s):  
Peer H. A. Timmers ◽  
Jarno Gieteling ◽  
H. C. Aura Widjaja-Greefkes ◽  
Caroline M. Plugge ◽  
Alfons J. M. Stams ◽  
...  

ABSTRACTCommunities of anaerobic methane-oxidizing archaea (ANME) and sulfate-reducing bacteria (SRB) grow slowly, which limits the ability to perform physiological studies. High methane partial pressure was previously successfully applied to stimulate growth, but it is not clear how different ANME subtypes and associated SRB are affected by it. Here, we report on the growth of ANME-SRB in a membrane capsule bioreactor inoculated with Eckernförde Bay sediment that combines high-pressure incubation (10.1 MPa methane) and thorough mixing (100 rpm) with complete cell retention by a 0.2-μm-pore-size membrane. The results were compared to previously obtained data from an ambient-pressure (0.101 MPa methane) bioreactor inoculated with the same sediment. The rates of oxidation of labeled methane were not higher at 10.1 MPa, likely because measurements were done at ambient pressure. The subtype ANME-2a/b was abundant in both reactors, but subtype ANME-2c was enriched only at 10.1 MPa. SRB at 10.1 MPa mainly belonged to the SEEP-SRB2 and Eel-1 groups and theDesulfuromonadalesand not to the typically found SEEP-SRB1 group. The increase of ANME-2a/b occurred in parallel with the increase of SEEP-SRB2, which was previously found to be associated only with ANME-2c. Our results imply that the syntrophic association is flexible and that methane pressure and sulfide concentration influence the growth of different ANME-SRB consortia. We also studied the effect of elevated methane pressure on methane production and oxidation by a mixture of methanogenic and sulfate-reducing sludge. Here, methane oxidation rates decreased and were not coupled to sulfide production, indicating trace methane oxidation during net methanogenesis and not anaerobic methane oxidation, even at a high methane partial pressure.


Sign in / Sign up

Export Citation Format

Share Document