Thermodynamics of mixed-ligand complexation of cerium group lanthanide ethylenediaminetetraacetates

2011 ◽  
Vol 56 (1) ◽  
pp. 128-132 ◽  
Author(s):  
T. S. Krivonogikh ◽  
E. S. Titova ◽  
D. F. Pyreu ◽  
E. V. Kozlovskii
Keyword(s):  
Author(s):  
Mohammed Al-Amery1 ◽  
Ashraf Saad Rasheed ◽  
Dina A. Najeeb

Five new mixed ligand metal complexes have been synthesized by the reaction of divalent transition metal ions (Hg, Ni, Zn, Cu and Cd) with 2-(naphthalen-l-ylamino)-2-phenylacetonitrile (L1 ) and 1,10-phenanthroline (L2). The coordination likelihood of the two ligands toward metal ions has been suggested in the light of elemental analysis, UV-Vis spectra, FTIR, 1H-NMR, flam atomic absorption, molar conductance and magnetic studies. Results data suggest that the octahedral geometry for all the prepared complexes. Antibacterial examination of synthesized complexes in vitro was performed against four bacterias. Firstly, Gram-negative bacteria namely, Pseudomonas aerugin and Escherichia. Secondly, Gram-positive bacteria namely, Bacillus subtilis, Staphylococcuaurouss. Results data exhibit that the synthesized complexes exhibited more biological activity than tetracycline pharmaceutical.


Author(s):  
Tahmeena Khan ◽  
Rumana Ahmad ◽  
Iqbal Azad ◽  
Saman Raza ◽  
Seema Joshi ◽  
...  

Background: Mixed ligand-metal complexes are efficient chelating agents because of flexible donor ability. Mixed ligand complexes containing hetero atoms sulphur, nitrogen and oxygen have been probed for their biological significance. Objective: Nine mixed ligand-metal complexes of 2-(butan-2-ylidene) hydrazinecarbothioamide (2-butanone thiosemicarbazone) and pyridine, bipyridine or 2-picoline as co-ligands were synthesized with Cu, Fe and Zn. The complexes were tested against MDA-MB231 (MDA) and A549 cell lines. Antibacterial activity was tested against S. aureus and E. coli. The drug character of the complexes was evaluated on several parameters viz. physicochemical properties, bioactivity scores, toxicity assessment and absorption, distribution, metabolism, excretion and toxicity (ADMET) profile assessment using various automated softwares. Molecular docking of the complexes was also performed with two target proteins. Method and Results: The mixed ligand-metal complexes were synthesized by condensation reaction for 4-5 h. The characterization was done by elemental analysis, 1H-NMR, FT-IR, molar conductance and UV spectroscopies. Molecular docking was performed against ribonucleotide reductase (RR) and topoisomerase II (topo II). [Cu(C5H11N3S)(py)2(CH3COO)2], [Zn(C5H11N3S)(bpy)(SO4)] and [Zn(C5H11N3S)(2-pic)2(SO4)] displayed the lowest binding energies with respect to RR. Against topo II [Cu(C5H11N3S)(py)2(CH3COO)2], [Cu(C5H11N3S)(bpy)(CH3COO)2] and [Zn(C5H11N3S)(2-pic)2(SO4)] had the lowest energies. The druglikness assessment was done using Leadlikeness and Lipinski’s rules. Against topo II [Cu(C5H11N3S)(py)2(CH3COO)2], [Cu(C5H11N3S)(bpy)(CH3COO)2] and [Zn(C5H11N3S)(2-pic)2(SO4)] had the lowest energies. Not more than two violations were obtained in case of each filtering rule showing drug like character of the mixed ligand complexes. Several of the complexes exhibited positive bioactivity scores and almost all the complexes were predicted to be safe with no hazardous effects. All the complexes were predicted to have no mutagenic character as shown by the Ames test [Zn(C5H11N3S)(py)2(SO4)] showed potential activity against MDA. [Co(C5H11N3S(bpy)(Cl)2] was also active against MDA. [Cu(C5H11N3S)(2-pic)2(CH3COO)2] also showed 27.6% cell viability at 100 µM against MDA. Against A549 [Co(C5H11N3S)(py)2(Cl)2], [Cu(C5H11N3S)(py)2(CH3COO)2] and [Co(C5H11N3S(bpy)(Cl)2] were active. [Co(C5H11N3S)(bpy)(Cl)2] and [Cu(C5H11N3S)(2-pic)2(CH3COO)2] were active against S. aureus. [Co(C5H11N3S)(2-pic)2(Cl)2] and [Zn(C5H11N3S)(2-pic)2(SO4)] were active at lower concentrations against S.aureus. Against E. coli, [Zn(C5H11N3S)(2-pic)2(SO4)] showed activity at 18-20mg dose range.


Sign in / Sign up

Export Citation Format

Share Document