The Use of the Heat-Accumulation Properties of Heat-Supply Networks and Buildings for the Extension of the Electric Power Output Control Range at Combined Heat and Power Plants

2021 ◽  
Vol 68 (7) ◽  
pp. 584-591
Author(s):  
R. Z. Aminov ◽  
E. Yu. Burdenkova ◽  
A. B. Moskalenko
Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 787
Author(s):  
Yan Zhang ◽  
Quan Lyu ◽  
Yang Li ◽  
Na Zhang ◽  
Lijun Zheng ◽  
...  

The issue of real-time deep down-regulation ancillary service has received increasing attention in the Northeast of China. Participation of combined heat and power plants with multitype units and flexible heating devices in the market is investigated. This paper establishes a model of feasible operating region and the coal consumption function for the combined heat and power plant. An internal optimal dispatch model and the minimum overall electric power output model for the plant satisfying a given heat load are presented. Furthermore, the models of total cost for down-regulation and average cost for deep down-regulation in two levels are established. These models are validated based on the realistic data of the plant in the Northeast of China. In case studies, the influence factors and change rules of the minimum electric power output, the total cost, and the average cost of plants are analyzed.


Author(s):  
Hitoshi Ohata ◽  
Toshikazu Nishibata ◽  
Tetsuya Onose

Reactor thermal power uprate (Power uprate) of operating light water reactors has long successful experiences in many nuclear power plants in the United States of America and European countries since late 1970’s. And it will be also introduced in Japan soon. This paper mainly describes the outline of the attempt of five-percent reactor thermal power uprate of Tokai No.2 Nuclear Power Station (Tokai-2) operated by the Japan Atomic Power Company (JAPC). It will be the leading case in Japan. Tokai-2 is GE type Boiling Water Reactor (BWR) of 1100 MW licensed electric power output and it commenced commercial operation in November 28, 1978. Power uprate is an effective approach for increasing electric power output. And it is recognized as one of the measures for effective and efficient use of existing Japanese operating nuclear power plants. It can contribute to inexpensive and stable electric power supply increase. Especially “Stretch Power Uprate (SPU)” requires only minor equipment modification or component replacement. It is also a countermeasure against global warming. Therefore it is a common theme to be accomplished in the near future for both Japanese electric power companies and government. JAPC started feasibility studies on power uprate in 2003. And in 2007, JAPC established a plan to achieve five-percent power uprate in Tokai-2 and announced this project to the public. This is a leading attempt in the Japanese electric power companies and it is the first case under the current Japanese regulatory requirements. In this plan, JAPC reflected lessons learned from preceding nuclear power plants in the United States and European countries, and tried to make most use of the performance of existing systems and components in Tokai-2 which have been periodically or timely renewed by utilizing more reliable and efficient design. JAPC plans to submit application documents to amend current License for Reactor Establishment Permit shortly. It will contain a complete set of revised safety analysis results based on the uprated reactor thermal power condition. Successful introduction of Tokai-2 power uprate will contribute to the establishment of regulatory process for power uprate in Japan and following attempts by other Japanese electric power companies.


Vestnik MEI ◽  
2020 ◽  
Vol 5 (5) ◽  
pp. 54-66
Author(s):  
Sergey S. Beloborodov ◽  
◽  
Aleksey A. Dudolin ◽  

Given the climatic and geographical conditions of the Russian Federation, the development of cogeneration should become the main line of measures aimed at increasing the energy efficiency and reducing greenhouse gas emissions in the country. However, the implementation of programs for development of renewable energy sources (RES) and nuclear power plants (NPP) entails risks of decreasing the amount of combined generation of electricity and heat by combined heat and power plants (CHPP) in the daily load curve base part. The current state of the wholesale market of electric power is characterized by critical conditions for the existing CHPPs in the first price zone of the wholesale market. The electric power cost formed from competitive power bid (CPB) results is such that the incomes earned by heat generating facilities are insufficient for fully covering the costs of their overhauls and modernization of their equipment. The “old” heat generation facilities, including CHPPs, subsidize the development of combined cycle power plants (CCPPs), RES, hydroelectric power plants (HPPs), and NPPs. The Russian Federation energy system development projects must be elaborated taking into account the results from a multivariate analysis of operational, technical, technological, economic, environmental, and social aspects. The heat supply schemes for cities and municipalities are developed subject to ensuring the preset level of reliability with minimizing its cost for the end customer. The minimum cost of heat supply can only be achieved for the optimal structure of heat and electricity generation capacities. This structure must incorporate equipment able to operate in the base, semi-peak, and peak parts of the daily electric load curve, and provide a power margin for passing seasonal maximums in the consumption of electricity and heat. The main milestones of the establishment and evolution of the energy system of Russia are considered. The main trends are shown along with the problems that have arisen in the operation of cogeneration power facilities in connection with the influence of new energy sources. The experience gained in leading foreign countries that have introduced RES is analyzed, and the influence of these sources on the power system balance is studied. The prospects of using combined electricity and heat generating facilities represented by highly maneuverable small- and medium-capacity gas turbine-based CHPPs in the semi-peak and peak parts of the daily electric load curve are analyzed.


Author(s):  
Heather E. Dillon ◽  
Whitney G. Colella

Pacific Northwest National Laboratory (PNNL) is working with industry to independently monitor up to fifteen distinct 5 kilowatt-electric (kWe) combined heat and power (CHP) high temperature (HT) proton exchange membrane (PEM) fuel cell systems (FCSs) installed in light commercial buildings. This research paper discusses an evaluation of the first six months of measured performance data acquired at a one-second sampling rate from real-time monitoring equipment attached to the FCSs at building sites. Engineering performance parameters are independently evaluated. Based on an analysis of the first few months of measured operating data, FCS performance is consistent with manufacturer-stated performance. Initial data indicate that the FCSs have relatively stable performance and a long term average production of about 4.57 kWe of power. This value is consistent with, but slightly below, the manufacturer’s stated rated electric power output of 5 kWe. The measured system net electric efficiency has averaged 33.7%, based on the higher heating value (HHV) of natural gas fuel. This value, also, is consistent with, but slightly below, the manufacturer’s stated rated electric efficiency of 36%. The FCSs provide low-grade hot water to the building at a measured average temperature of about 48.4°C, lower than the manufacturer’s stated maximum hot water delivery temperature of 65°C. The uptime of the systems is also evaluated. System availability can be defined as the quotient of total operating time compared to time since commissioning. The average values for system availability vary between 96.1 and 97.3%, depending on the FCS evaluated in the field. Performance at Rated Value for electrical efficiency (PRVeff) can be defined as the quotient of the system time operating at or above the rated electric efficiency and the time since commissioning. The PRVeff varies between 5.6% and 31.6%, depending on the FCS field unit evaluated. Performance at Rated Value for electrical power (PRVp) can be defined as the quotient of the system time operating at or above the rated electric power and the time since commissioning. PRVp varies between 6.5% and 16.2%. Performance at Rated Value for electrical efficiency and power (PRVt) can be defined as the quotient of the system time operating at or above both the rated electric efficiency and the electric power output compared to the time since commissioning. PRVt varies between 0.2% and 1.4%. Optimization to determine the manufacturer rating required to achieve PRVt greater than 80% has been performed based on the collected data. For example, for FCS unit 130 to achieve a PRVt of 95%, it would have to be down-rated to an electrical power output of 3.2 kWe and an electrical efficiency of 29%.The use of PRV as an assessment metric for FCSs has been developed and reported for the first time in this paper. For FCS Unit 130, a 20% decline in electric power output was observed from approximately 5 kWe to 4 kWe over a 1,500 hour period between Dec. 14th 2011 and Feb. 14th 2012.


Author(s):  
Heather E. Dillon ◽  
Whitney G. Colella

Pacific Northwest National Laboratory (PNNL) is working with industry to independently monitor up to fifteen distinct 5 kilowatt-electric (kWe) combined heat and power (CHP) high temperature (HT) proton exchange membrane (PEM) fuel cell systems (FCSs) installed in light commercial buildings. This research paper discusses an evaluation of the first six months of measured performance data acquired at a one-second sampling rate from real-time monitoring equipment attached to the FCSs at building sites. Engineering performance parameters are independently evaluated. Based on an analysis of the first few months of measured operating data, FCS performance is consistent with manufacturer-stated performance. Initial data indicate that the FCSs have relatively stable performance and a long term average production of about 4.57 kWe of power. This value is consistent with, but slightly below, the manufacturer’s stated rated electric power output of 5 kWe. The measured system net electric efficiency has averaged 33.7%, based on the higher heating value (HHV) of natural gas fuel. This value, also, is consistent with, but slightly below, the manufacturer’s stated rated electric efficiency of 36%. The FCSs provide low-grade hot water to the building at a measured average temperature of about 48.4°C, lower than the manufacturer’s stated maximum hot water delivery temperature of 65°C. The uptime of the systems is also evaluated. System availability can be defined as the quotient of total operating time compared to time since commissioning. The average values for system availability vary between 96.1 and 97.3%, depending on the FCS evaluated in the field. Performance at Rated Value for electrical efficiency (PRVeff) can be defined as the quotient of the system time operating at or above the rated electric efficiency and the time since commissioning. The PRVeff varies between 5.6% and 31.6%, depending on the FCS field unit evaluated. Performance at Rated Value for electrical power (PRVp) can be defined as the quotient of the system time operating at or above the rated electric power and the time since commissioning. PRVp varies between 6.5% and 16.2%. Performance at Rated Value for electrical efficiency and power (PRVt) can be defined as the quotient of the system time operating at or above both the rated electric efficiency and the electric power output compared to the time since commissioning. PRVt varies between 0.2% and 1.4%. Optimization to determine the manufacturer rating required to achieve PRVt greater than 80% has been performed based on the collected data. For example, for FCS unit 130 to achieve a PRVt of 95%, it would have to be down-rated to an electrical power output of 3.2 kWe and an electrical efficiency of 29%.The use of PRV as an assessment metric for FCSs has been developed and reported for the first time in this paper. For FCS Unit 130, a 20% decline in electric power output was observed from approximately 5 kWe to 4 kWe over a 1,500 hour period between Dec. 14th 2011 and Feb. 14th 2012.


Author(s):  
Tetsuya Wakui ◽  
Ryohei Yokoyama

The reduction in the power output fluctuation of grid-connected wind turbine-generator systems is strongly required to further increase their total installed capacity in Japan. This study focuses on limiting the maximum electric power output by changing the set point of the power output control as a reduction technique. The influence of limiting the maximum electric power output of a 2 MW-system, which adopts the variable speed operation, on the power output fluctuation characteristic is analyzed through numerical simulation conducted by using an observed field wind data. The focus is on the power output fluctuation, which is important for management of commercial power systems including power plants, of the 2 MW-system with six cases of the maximum electric power output. The results show that limiting the maximum electric power output does not have an influence on the power output fluctuation characteristic and control performance during the pitch angle operation at high wind speeds. However, the year-round simulation reveals that limiting the maximum electric power output brings a tradeoff between the reduction in the power output fluctuation and the generating performance.


Author(s):  
Max F. Platzer ◽  
Nesrin Sarigul-Klijn ◽  
J. Young ◽  
M. A. Ashraf ◽  
J. C. S. Lai

Vast ocean areas of planet Earth are exposed year-round to strong wind currents. We suggest that this untapped ocean wind power be exploited by the use of sailing ships. The availability of constantly updated meteorological information makes it possible to operate the ships in ocean areas with optimum wind power so that the propulsive ship power can be converted into electric power by means of ship-mounted hydro-power generators. Their electric power output then is fed into ship-mounted electrolyzers to convert sea water into hydrogen and oxygen. In this paper we estimate the ship size, sail area and generator size to produce a 1.5 MW electrical power output. We describe a new oscillating-wing hydro-power generator and present results of model tests obtained in a towing tank. Navier-Stokes computations are presented to provide an estimate of the power extraction efficiency and drag coefficient of such a generator which depends on a range of parameters such as foil maximum pitch angles, plunge amplitude, phase between pitch and plunge and load. Also, we present a discussion of the feasibility of sea water electrolysis and of the re-conversion of hydrogen and oxygen into electricity by means of shore-based hydrogen-oxygen power plants.


2018 ◽  
Vol 8 (1) ◽  
pp. 119-127 ◽  
Author(s):  
Takatoshi Hayashi ◽  
Tomoya Nagayama ◽  
Tadashi Tanaka ◽  
Yoshitaka Inui

Sign in / Sign up

Export Citation Format

Share Document