On the continuous extension of a generalized solution of the Hamilton–Jacobi equation by characteristics that form a central field of extremals

2016 ◽  
Vol 293 (S1) ◽  
pp. 183-198
Author(s):  
N. N. Subbotina ◽  
L. G. Shagalova
2020 ◽  
Vol 26 ◽  
pp. 66 ◽  
Author(s):  
Julien Bernis ◽  
Piernicola Bettiol

We consider a class of optimal control problems in which the cost to minimize comprises both a final cost and an integral term, and the data can be discontinuous with respect to the time variable in the following sense: they are continuous w.r.t. t on a set of full measure and have everywhere left and right limits. For this class of Bolza problems, employing techniques coming from viability theory, we give characterizations of the value function as the unique generalized solution to the corresponding Hamilton-Jacobi equation in the class of lower semicontinuous functions: if the final cost term is extended valued, the generalized solution to the Hamilton-Jacobi equation involves the concepts of lower Dini derivative and the proximal normal vectors; if the final cost term is a locally bounded lower semicontinuous function, then we can show that this has an equivalent characterization in a viscosity sense.


2020 ◽  
Vol 23 (3) ◽  
pp. 306-311
Author(s):  
Yu. Kurochkin ◽  
Dz. Shoukavy ◽  
I. Boyarina

The immobility of the center of mass in spaces of constant curvature is postulated based on its definition obtained in [1]. The system of two particles which interact through a potential depending only on the distance between particles on a three-dimensional sphere is considered. The Hamilton-Jacobi equation is formulated and its solutions and trajectory equations are found. It was established that the reduced mass of the system depends on the relative distance.


Author(s):  
Jennifer Coopersmith

Hamilton’s genius was to understand what were the true variables of mechanics (the “p − q,” conjugate coordinates, or canonical variables), and this led to Hamilton’s Mechanics which could obtain qualitative answers to a wider ranger of problems than Lagrangian Mechanics. It is explained how Hamilton’s canonical equations arise, why the Hamiltonian is the “central conception of all modern theory” (quote of Schrödinger’s), what the “p − q” variables are, and what phase space is. It is also explained how the famous conservation theorems arise (for energy, linear momentum, and angular momentum), and the connection with symmetry. The Hamilton-Jacobi Equation is derived using infinitesimal canonical transformations (ICTs), and predicts wavefronts of “common action” spreading out in (configuration) space. An analogy can be made with geometrical optics and Huygen’s Principle for the spreading out of light waves. It is shown how Hamilton’s Mechanics can lead into quantum mechanics.


Author(s):  
Razvan Gabriel Iagar ◽  
Philippe Laurençot

A classification of the behaviour of the solutions f(·, a) to the ordinary differential equation (|f′|p-2f′)′ + f - |f′|p-1 = 0 in (0,∞) with initial condition f(0, a) = a and f′(0, a) = 0 is provided, according to the value of the parameter a > 0 when the exponent p takes values in (1, 2). There is a threshold value a* that separates different behaviours of f(·, a): if a > a*, then f(·, a) vanishes at least once in (0,∞) and takes negative values, while f(·, a) is positive in (0,∞) and decays algebraically to zero as r→∞ if a ∊ (0, a*). At the threshold value, f(·, a*) is also positive in (0,∞) but decays exponentially fast to zero as r→∞. The proof of these results relies on a transformation to a first-order ordinary differential equation and a monotonicity property with respect to a > 0. This classification is one step in the description of the dynamics near the extinction time of a diffusive Hamilton–Jacobi equation with critical gradient absorption and fast diffusion.


Sign in / Sign up

Export Citation Format

Share Document