scholarly journals On the Spectral Gap and the Diameter of Cayley Graphs

2021 ◽  
Vol 314 (1) ◽  
pp. 307-324
Author(s):  
I. D. Shkredov
Keyword(s):  
10.37236/267 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
Filippo Cesi

In a recent paper Gunnells, Scott and Walden have determined the complete spectrum of the Schreier graph on the symmetric group corresponding to the Young subgroup $S_{n-2}\times S_2$ and generated by initial reversals. In particular they find that the first nonzero eigenvalue, or spectral gap, of the Laplacian is always 1, and report that "empirical evidence" suggests that this also holds for the corresponding Cayley graph. We provide a simple proof of this last assertion, based on the decomposition of the Laplacian of Cayley graphs, into a direct sum of irreducible representation matrices of the symmetric group.


2018 ◽  
Vol 105 (1) ◽  
pp. 79-102
Author(s):  
FLORENT JOUVE ◽  
JEAN-SÉBASTIEN SERENI

We prove a general large-sieve statement in the context of random walks on subgraphs of a given graph. This can be seen as a generalization of previously known results where one performs a random walk on a group enjoying a strong spectral gap property. In such a context the point is to exhibit a strong uniform expansion property for a suitable family of Cayley graphs on quotients. In our combinatorial approach, this is replaced by a result of Alon–Roichman about expanding properties of random Cayley graphs. Applying the general setting we show, for instance, that with high probability (in a strong explicit sense) random coloured subsets of integers contain monochromatic (nonempty) subsets summing to $0$, and that a random colouring of the edges of a complete graph contains a monochromatic triangle.


Author(s):  
Jürgen Jost ◽  
Raffaella Mulas ◽  
Florentin Münch

AbstractWe offer a new method for proving that the maxima eigenvalue of the normalized graph Laplacian of a graph with n vertices is at least $$\frac{n+1}{n-1}$$ n + 1 n - 1 provided the graph is not complete and that equality is attained if and only if the complement graph is a single edge or a complete bipartite graph with both parts of size $$\frac{n-1}{2}$$ n - 1 2 . With the same method, we also prove a new lower bound to the largest eigenvalue in terms of the minimum vertex degree, provided this is at most $$\frac{n-1}{2}$$ n - 1 2 .


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Nima Afkhami-Jeddi ◽  
Henry Cohn ◽  
Thomas Hartman ◽  
Amirhossein Tajdini

Abstract We study the torus partition functions of free bosonic CFTs in two dimensions. Integrating over Narain moduli defines an ensemble-averaged free CFT. We calculate the averaged partition function and show that it can be reinterpreted as a sum over topologies in three dimensions. This result leads us to conjecture that an averaged free CFT in two dimensions is holographically dual to an exotic theory of three-dimensional gravity with U(1)c×U(1)c symmetry and a composite boundary graviton. Additionally, for small central charge c, we obtain general constraints on the spectral gap of free CFTs using the spinning modular bootstrap, construct examples of Narain compactifications with a large gap, and find an analytic bootstrap functional corresponding to a single self-dual boson.


2021 ◽  
Vol 111 (1) ◽  
Author(s):  
Dario Feliciangeli ◽  
Simone Rademacher ◽  
Robert Seiringer

AbstractThe Landau–Pekar equations describe the dynamics of a strongly coupled polaron. Here, we provide a class of initial data for which the associated effective Hamiltonian has a uniform spectral gap for all times. For such initial data, this allows us to extend the results on the adiabatic theorem for the Landau–Pekar equations and their derivation from the Fröhlich model obtained in previous works to larger times.


Sign in / Sign up

Export Citation Format

Share Document