scholarly journals Persistence of the spectral gap for the Landau–Pekar equations

2021 ◽  
Vol 111 (1) ◽  
Author(s):  
Dario Feliciangeli ◽  
Simone Rademacher ◽  
Robert Seiringer

AbstractThe Landau–Pekar equations describe the dynamics of a strongly coupled polaron. Here, we provide a class of initial data for which the associated effective Hamiltonian has a uniform spectral gap for all times. For such initial data, this allows us to extend the results on the adiabatic theorem for the Landau–Pekar equations and their derivation from the Fröhlich model obtained in previous works to larger times.

Entropy ◽  
2020 ◽  
Vol 22 (9) ◽  
pp. 975
Author(s):  
Rodrigo de Miguel ◽  
J. Miguel Rubí

We propose a Hamiltonian-based approach to the nonextensive thermodynamics of small systems, where small is a relative term comparing the size of the system to the size of the effective interaction region around it. We show that the effective Hamiltonian approach gives easy accessibility to the thermodynamic properties of systems strongly coupled to their surroundings. The theory does not rely on the classical concept of dividing surface to characterize the system’s interaction with the environment. Instead, it defines an effective interaction region over which a system exchanges extensive quantities with its surroundings, easily producing laws recently shown to be valid at the nanoscale.


2002 ◽  
Vol 17 (38) ◽  
pp. 2513-2521 ◽  
Author(s):  
YASUO UMINO

We calculate the equation of state of strongly coupled Hamiltonian lattice QCD at finite density by constructing a solution to the equation of motion corresponding to an effective Hamiltonian describing the ground state of the theory with Wilson fermions. To lowest order in N c we find that the pressure of the quark Fermi sea can be negative indicating its mechanical instability. This new mean field result is in qualitative agreement with continuum models and should be verifiable by future numerical simulations.


Entropy ◽  
2019 ◽  
Vol 21 (10) ◽  
pp. 937
Author(s):  
Yosi Atia ◽  
Yonathan Oren ◽  
Nadav Katz

Quantum computation by the adiabatic theorem requires a slowly-varying Hamiltonian with respect to the spectral gap. We show that the Landau–Zener–Stückelberg oscillation phenomenon, which naturally occurs in quantum two-level systems under non-adiabatic periodic drive, can be exploited to find the ground state of an N-dimensional Grover Hamiltonian. The total runtime of this method is O ( 2 n ) , which is equal to the computational time of the Grover algorithm in the quantum circuit model. An additional periodic drive can suppress a large subset of Hamiltonian control errors by using coherent destruction of tunneling, thus outperforming previous algorithms.


2020 ◽  
Vol 26 ◽  
pp. 121
Author(s):  
Dongbing Zha ◽  
Weimin Peng

For the Cauchy problem of nonlinear elastic wave equations for 3D isotropic, homogeneous and hyperelastic materials with null conditions, global existence of classical solutions with small initial data was proved in R. Agemi (Invent. Math. 142 (2000) 225–250) and T. C. Sideris (Ann. Math. 151 (2000) 849–874) independently. In this paper, we will give some remarks and an alternative proof for it. First, we give the explicit variational structure of nonlinear elastic waves. Thus we can identify whether materials satisfy the null condition by checking the stored energy function directly. Furthermore, by some careful analyses on the nonlinear structure, we show that the Helmholtz projection, which is usually considered to be ill-suited for nonlinear analysis, can be in fact used to show the global existence result. We also improve the amount of Sobolev regularity of initial data, which seems optimal in the framework of classical solutions.


2000 ◽  
Vol 10 (PR5) ◽  
pp. Pr5-271-Pr5-274
Author(s):  
H. Totsuji ◽  
K. Tsuruta ◽  
C. Totsuji ◽  
K. Nakano ◽  
T. Kishimoto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document