The influence of surface porosity on the stability and transition of supersonic boundary layer on a flat plate

2010 ◽  
Vol 17 (2) ◽  
pp. 259-268 ◽  
Author(s):  
S. A. Gaponov ◽  
Yu. G. Ermolaev ◽  
A. D. Kosinov ◽  
V. I. Lysenko ◽  
N. V. Semenov ◽  
...  
2012 ◽  
Vol 19 (4) ◽  
pp. 555-560 ◽  
Author(s):  
S. A. Gaponov ◽  
Yu. G. Ermolaev ◽  
A. D. Kosinov ◽  
V. I. Lysenko ◽  
N. V. Semenov ◽  
...  

2008 ◽  
Vol 3 (3) ◽  
pp. 34-38
Author(s):  
Sergey A. Gaponov ◽  
Yuri G. Yermolaev ◽  
Aleksandr D. Kosinov ◽  
Nikolay V. Semionov ◽  
Boris V. Smorodsky

Theoretical and an experimental research results of the disturbances development in a swept wing boundary layer are presented at Mach number М = 2. In experiments development of natural and small amplitude controllable disturbances downstream was studied. Experiments were carried out on a swept wing model with a lenticular profile at a zero attack angle. The swept angle of a leading edge was 40°. Wave parameters of moving disturbances were determined. In frames of the linear theory and an approach of the local self-similar mean flow the stability of a compressible three-dimensional boundary layer is studied. Good agreement of the theory with experimental results for transversal scales of unstable vertices of the secondary flow was obtained. However the calculated amplification rates differ from measured values considerably. This disagreement is explained by the nonlinear processes observed in experiment


2015 ◽  
Vol 10 (2) ◽  
pp. 18-26
Author(s):  
Sergey Gaponov ◽  
Aleksandr Semenov

In the paper the influence of the gas blowing direction through a porous surface on the supersonic boundary layer stability is investigated theoretically, using the classical method of elementary waves and the evolutionary method at Mach number M = 2. It was found that with decreasing of the gas injection angle to the plane plate the boundary layer stability was improved and the tangential blowing effect on the boundary layer stability is little in a comparison with the case of a boundary layer without mass exchange.


2019 ◽  
Vol 196 ◽  
pp. 00018 ◽  
Author(s):  
Vasiliy Kocharin ◽  
Aleksandr Kosinov ◽  
Yuriy Yermolayev ◽  
Nikolay Semionov

The experimental study of the effect of weak shock waves on the supersonic boundary layer of the flat plate with a blunt leading edge (the radius of bluntness was r = 2.5 mm) with Mach number M = 2.5 and zero angle of attack was carried out. The measurements were carried out using the constant temperature anemometer. The paper presents a complex flow structure on the surface of the model. High-intensity peaks were found in the regions of the disturbed flow. Also the spectral analysis of perturbations was performed. It is found that the supersonic boundary layer on a flat plate is very sensitive to the effect of weak shock waves.


2015 ◽  
Vol 10 (3) ◽  
pp. 41-47
Author(s):  
Vladimir Lysenko ◽  
Sergey Gaponov ◽  
Boris Smorodsky ◽  
Yuri Yermolaev ◽  
Aleksandr Kosinov ◽  
...  

Theoretical and experimental investigation of the influence of porous-coating thickness on the stability of the supersonic flat-plate boundary layer at free-stream Mach number M = 2 have been performed. Good quantitative agreement of experimental data obtained with artificially generated disturbances performed on models with various porous inserts and calculations based on the linear stability theory has been achieved. It is shown that the increase of the porous-coating thickness leads to the boundary layer destabilization.


Sign in / Sign up

Export Citation Format

Share Document