surface porosity
Recently Published Documents


TOTAL DOCUMENTS

224
(FIVE YEARS 65)

H-INDEX

23
(FIVE YEARS 4)

2022 ◽  
Vol 1049 ◽  
pp. 130-137
Author(s):  
Natalia Antonova

New porous films based on polyanionic cellulose with AlOOH nanoparticles have been developed. The morphology of the films has been studied by electron microscopy: the size of the formed pores is 1000-500 microns; the total surface porosity of the films is 30%. Using infrared microscopy, it was shown that during the formation of porous films, their chemical composition remains unchanged. Differential scanning calorimetry was used to determine the threshold for thermal destruction of porous films: 306 С. The possibility of using the obtained materials as antifriction coatings when filling the pores with solid lubricant MoS2 is considered. It is shown that for a steel sample protected by a porous coating with MoS2, the friction coefficient decreases by 50% compared to the friction coefficient for a steel surface under a load of up to 450 MPa.


Langmuir ◽  
2021 ◽  
Author(s):  
Josué Mena ◽  
Joan J. Carvajal ◽  
Vitaly Zubialevich ◽  
Peter J. Parbrook ◽  
Francesc Díaz ◽  
...  

MRS Advances ◽  
2021 ◽  
Author(s):  
Quetzalmaflor Miranda-Hernández ◽  
Ángel León-Gerónimo ◽  
José Lemus-Ruiz

Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1878
Author(s):  
Iksang Lee ◽  
Arif Hussain ◽  
Hee-Lak Lee ◽  
Yoon-Jae Moon ◽  
Jun-Young Hwang ◽  
...  

We studied the effect of current supply duration at final-step currents during the stepwise electrical sintering of silver (Ag) nanoparticles (NPs). Ag NPs ink was inkjet-printed onto Eagle-XG glass substrates. Constant final-step currents of 0.4 and 0.5 A with various time intervals were applied to the printed samples. The final-step current of 0.5 A damaged the line at a comparatively shorter time duration. On the other hand, the lower final-step current of 0.4 A prevented the line damage at longer time durations while producing comparatively lower Ag NPs specific resistance. The minimum specific resistances of the printed samples sintered at 0.4 and 0.5 A were 3.59 μΩ∙cm and 3.79 μΩ∙cm, respectively. Furthermore, numerical temperature estimation and scanning electron microscope (SEM) analysis were conducted to elaborate on the results. The numerical temperature estimation results implied that the lower estimated peak temperature at the final-step current of 0.4 A helped prevent Ag NP line damage. The SEM micrographs suggested that a high surface porosity—caused by higher sintering peak temperatures—in the case of the 0.5 A final-step current resulted in a comparatively higher Ag NP line-specific resistance. This contribution is a step forward in the development of Ag NP sintering for printed electronics applications.


2021 ◽  
Vol 22 (4) ◽  
pp. 614-620
Author(s):  
Y. Suchikova ◽  
A. Lazarenko ◽  
S. Kovachov ◽  
I. Bohdanov

Nanostructured zinc selenide has been obtained by electrochemical etching with an H2SO4:H2O:H2O5OH=4:1:1 solution used as the electrolyte. The experiment has indicated that the surface consists of two phases, namely the upper layer made up of a dense oxide film and a low-sized porous layer underneath, with a pore diameter of (30-80) nm and a thickness of interporous walls of (15-50) nm. The investigated dependence of surface porosity on the etching time allows us to explain the main stages of the crystal’s electrochemical dissolution during anodizing. The experiment has indicated the presence of three main stages, such as the formation of the Gouy and Helmholtz layers at the semiconductor/electrolyte segregation; pore formation at defect and oxide crystallite locations; spontaneous pore formation. The PL spectra of the samples under study have demonstrated three maxima. The emission band at 2.45 eV is attributable to the presence of oxides, the band at 2.78 EV can be accounted for the corresponding excitons while the band at 2.82 eV stems from quantum-dimensional effects. Chemical analysis of the samples has also indicated the presence of oxides on the surface of the nanostructure.


2021 ◽  
Vol 87 (10) ◽  
pp. 34-39
Author(s):  
T. I. Devyatkina ◽  
E. S. Belyaev ◽  
V. V. Rogozhin ◽  
M. V. Maksimov

Aluminum alloys with electroplated coatings and copper plated in particular gained multiple applications. However, pre-zincate treatment often fails to provide the desired adhesion of the coating. We present the results of studying the effect of the electrolyte composition on the adhesion and other properties of the coating-base system. It is shown that an electrolyte with a reduced content of sulfuric and phosphoric acids can be used for anodizing and the oxide films formed during anodizing are stable in the usual copper-plating sulfuric acid electrolyte which eliminates contact exchange and increases adhesion. The use of a modern scratch-test method provides numerical determination of the values of adhesion of copper coatings. The adhesion value depends on the surface porosity of the oxide film and on the type of anodized alloys. The results can be used to improve the technology of applying copper coatings, both as an independent coating and as an underlayer in multilayer coatings.


Lithosphere ◽  
2021 ◽  
Vol 2021 (Special 1) ◽  
Author(s):  
Yunqian Jia ◽  
Denglin Han ◽  
Jizhen Zhang ◽  
Chenchen Wang ◽  
Wei Lin ◽  
...  

Abstract Organic matter pores are of important significance in the shale formation system rich of organic matters. Although a lot of studies have discussed controlling factors of organic matter pores in the past, it still lacks a quantitative analysis on contributions of organic macerals to organic matter pores. In this study, a case study based on the overmature marine facies shale reservoir in the first submember of the Longmaxi Formation of Silurian in the Weiyuan area was carried out. Besides, qualitative and quantitative identifications of organic macerals and their pore development capacity were provided using the scanning electron microscopy (SEM). The results showed that (1) pore-forming efficiency is one controlling factor over pore development of organic matter. Sapropelinite shows the highest pore-forming efficiency (avg. 38.5%) and while the vitrinite, inertinite, and exinite have the lower pore-forming efficiency. (2) The content of sapropelinite is the highest (avg. 82.4%), and the content of sapropelinite is higher in the Long111 and Long113 layers. (3) The content of sapropelinite has a strong positive correlation with the organic surface porosity. (4) Organic surface porosity, organic porosity, and total porosity present basically consistent variations along the vertical direction of single well. Organic surface porosity restricts the organic porosity which is the dominant type in total porosity. Hence, pore-forming efficiency of organic macerals restricts performances of the reservoir.


2021 ◽  
Vol 263 (5) ◽  
pp. 1633-1644
Author(s):  
Michael Jones

This paper presents results attained in the NASA Langley Research Center test rigs using concepts for which the impedance varies over the surface of the liner. These liners are typically designed for significant sound absorption over a wide frequency range, but it is also possible to tune the design to achieve increased absorption at selected frequencies. A brief review is provided regarding a number of variable-impedance concepts. The first is a modified version of a conventional two-layer liner, in which the embedded septum location and acoustic properties are different for adjacent core chambers. Two concepts employ core chambers with different lengths, one with bent chambers to allow packaging within a limited volume, and the other with shared inlet ports to reduce the surface porosity. The last employs a perforated facesheet in which the hole diameter and porosity are varied over the surface of the liner. Data acquired in the NASA normal incidence and grazing flow impedance tubes are used to demonstrate the capabilities of these concepts. Impedance prediction models are also presented for comparison with these measured data.


Membranes ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 527
Author(s):  
Yasushi Mino ◽  
Naruki Fukukawa ◽  
Hideto Matsuyama

The formation of porous structures from polymer solutions at the surface in contact with various solid surfaces via a thermally-induced phase separation (TIPS) process is investigated. The pore formation process at the bulk and the surface of the poly(methyl methacrylate)/cyclohexanol solution is simulated with a model based on the phase field method. When the compatibilities between the polymer-rich phase formed by the phase separation and the solid surface are high or low, surface porosity decreases. In contrast, for the solid surface having similar compatibilities with the polymer and solvent, high surface porosity is achieved. This indicates that the compatibility between the solid surface and polymer solution is important, and that optimal compatibility results in high surface porosity. The knowledge obtained in this work is useful to design the coagulation bath component in the membrane preparation process by TIPS for achieving high surface porosity.


Sign in / Sign up

Export Citation Format

Share Document