Expansion of capabilities of the short-duration wind tunnel with an opposing pressure multiplier

2016 ◽  
Vol 23 (6) ◽  
pp. 849-856 ◽  
Author(s):  
V. V. Shumskii ◽  
M. I. Yaroslavtsev
2001 ◽  
Vol 105 (1050) ◽  
pp. 435-450 ◽  
Author(s):  
J. Weiss ◽  
H. Knauss ◽  
S. Wagner ◽  
A. D. Kosinov

AbstractA constant temperature hot-wire anemometer enabling automatic rapid scanning of the wire overheat was built to perform free stream disturbance measurements in the shock wind tunnel of the Institute for Aerodynamics and Gasdynamics at Stuttgart University. It is shown that such a system brings real advantages in terms of testing time. The change of bridge dynamic behaviour with wire temperature is taken into account by measuring the bridge frequency response with a very fast electrical test and postprocessing the data. The method of operation is validated in a supersonic suck down wind tunnel and a comparison with a commercial constant temperature bridge shows good agreement. Results of free stream disturbance measurements in a short duration supersonic wind tunnel of 120ms testing time are presented.


1999 ◽  
Vol 173 ◽  
pp. 249-254
Author(s):  
A.M. Silva ◽  
R.D. Miró

AbstractWe have developed a model for theH2OandOHevolution in a comet outburst, assuming that together with the gas, a distribution of icy grains is ejected. With an initial mass of icy grains of 108kg released, theH2OandOHproductions are increased up to a factor two, and the growth curves change drastically in the first two days. The model is applied to eruptions detected in theOHradio monitorings and fits well with the slow variations in the flux. On the other hand, several events of short duration appear, consisting of a sudden rise ofOHflux, followed by a sudden decay on the second day. These apparent short bursts are frequently found as precursors of a more durable eruption. We suggest that both of them are part of a unique eruption, and that the sudden decay is due to collisions that de-excite theOHmaser, when it reaches the Cometopause region located at 1.35 × 105kmfrom the nucleus.


Sign in / Sign up

Export Citation Format

Share Document