Optimization of multiple covering of a bounded set with circles

2010 ◽  
Vol 50 (4) ◽  
pp. 721-732 ◽  
Author(s):  
Sh. I. Galiev ◽  
M. A. Karpova

2021 ◽  
Vol 11 (1) ◽  
pp. 232-240
Author(s):  
Alexander V. Khorkov ◽  
Shamil I. Galiev

Abstract A numerical method for investigating k-coverings of a convex bounded set with circles of two given radii is proposed. Cases with constraints on the distances between the covering circle centers are considered. An algorithm for finding an approximate number of such circles and the arrangement of their centers is described. For certain specific cases, approximate lower bounds of the density of the k-covering of the given domain are found. We use either 0–1 linear programming or general integer linear programming models. Numerical results demonstrating the effectiveness of the proposed methods are presented.





2020 ◽  
Vol 12 (2) ◽  
pp. 392-400
Author(s):  
Ö. Biçer ◽  
M. Olgun ◽  
T. Alyildiz ◽  
I. Altun

The definition of related mappings was introduced by Fisher in 1981. He proved some theorems about the existence of fixed points of single valued mappings defined on two complete metric spaces and relations between these mappings. In this paper, we present some related fixed point results for multivalued mappings on two complete metric spaces. First we give a classical result which is an extension of the main result of Fisher to the multivalued case. Then considering the recent technique of Wardowski, we provide two related fixed point results for both compact set valued and closed bounded set valued mappings via $F$-contraction type conditions.



2013 ◽  
Vol 2 (1) ◽  
pp. 173-192 ◽  
Author(s):  
Stephen Thompson ◽  
◽  
Thomas I. Seidman ◽  


2013 ◽  
Vol 444-445 ◽  
pp. 731-737
Author(s):  
Zhi Bo Hou ◽  
Li Mei Li

In this paper, by using an iteration procedure, regularity estimates of the linear semi-groups and a generalized existence theorem of global attractor, we prove that the liquid helium-4 system possesses a global attractor in space for all , which attracts any bounded set of in the-norm.



2004 ◽  
Vol 32 (4) ◽  
pp. 3167-3190 ◽  
Author(s):  
Dante DeBlassie
Keyword(s):  


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Messaoud Bounkhel

For a set-valued mappingMdefined between two Hausdorff topological vector spacesEandFand with closed convex graph and for a given point(x,y)∈E×F, we study the minimal time function associated with the images ofMand a bounded setΩ⊂Fdefined by𝒯M,Ω(x,y):=inf{t≥0:M(x)∩(y+tΩ)≠∅}. We prove and extend various properties on directional derivatives and subdifferentials of𝒯M,Ωat those points of(x,y)∈E×F(both cases: points in the graphgph Mand points outside the graph). These results are used to prove, in terms of the minimal time function, various new characterizations of the convex tangent cone and the convex normal cone to the graph ofMat points insidegph Mand to the graph of the enlargement set-valued mapping at points outsidegph M. Our results extend many existing results, from Banach spaces and normed vector spaces to Hausdorff topological vector spaces (Bounkhel, 2012; Bounkhel and Thibault, 2002; Burke et al., 1992; He and Ng, 2006; and Jiang and He 2009). An application of the minimal time function𝒯M,Ωto the calmness property of perturbed optimization problems in Hausdorff topological vector spaces is given in the last section of the paper.



2018 ◽  
Vol 51 (32) ◽  
pp. 850-854 ◽  
Author(s):  
Lempert Anna ◽  
Le Quang Mung


2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Yongqiang Fu ◽  
Miaomiao Yang

This paper is concerned with the functionalJdefined byJ(u)=∫Ω×ΩW(x,y,∇u(x),∇u(y))dx dy, whereΩ⊂ℝNis a regular open bounded set andWis a real-valued function with variable growth. After discussing the theory of Young measures in variable exponent Sobolev spaces, we study the weak lower semicontinuity and relaxation ofJ.



Sign in / Sign up

Export Citation Format

Share Document