Solving boundary value problems of mathematical physics using radial basis function networks

2017 ◽  
Vol 57 (1) ◽  
pp. 145-155 ◽  
Author(s):  
V. I. Gorbachenko ◽  
M. V. Zhukov
Author(s):  
Mohie Mortadha Alqezweeni ◽  
Vladimir Ivanovich Gorbachenko ◽  
Maxim Valerievich Zhukov ◽  
Mustafa Sadeq Jaafar

A method using radial basis function networks (RBFNs) to solve boundary value problems of mathematical physics is presented in this paper. The main advantages of mesh-free methods based on RBFN are explained here. To learn RBFNs, the Trust Region Method (TRM) is proposed, which simplifies the process of network structure selection and reduces time expenses to adjust their parameters. Application of the proposed algorithm is illustrated by solving two-dimensional Poisson equation.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
J. Zhang ◽  
F. Z. Wang ◽  
E. R. Hou

The performance of the parameter-free conical radial basis functions accompanied with the Chebyshev node generation is investigated for the solution of boundary value problems. In contrast to the traditional conical radial basis function method, where the collocation points are placed uniformly or quasi-uniformly in the physical domain of the boundary value problems in question, we consider three different Chebyshev-type schemes to generate the collocation points. This simple scheme improves accuracy of the method with no additional computational cost. Several numerical experiments are given to show the validity of the newly proposed method.


1991 ◽  
Vol 3 (2) ◽  
pp. 246-257 ◽  
Author(s):  
J. Park ◽  
I. W. Sandberg

There have been several recent studies concerning feedforward networks and the problem of approximating arbitrary functionals of a finite number of real variables. Some of these studies deal with cases in which the hidden-layer nonlinearity is not a sigmoid. This was motivated by successful applications of feedforward networks with nonsigmoidal hidden-layer units. This paper reports on a related study of radial-basis-function (RBF) networks, and it is proved that RBF networks having one hidden layer are capable of universal approximation. Here the emphasis is on the case of typical RBF networks, and the results show that a certain class of RBF networks with the same smoothing factor in each kernel node is broad enough for universal approximation.


Sign in / Sign up

Export Citation Format

Share Document