Comparative Assessment of the Gene Pool and the Viability of Forest Plantations from Moscow and Natural Populations from the Moscow Region by Example of Norway Spruce (Picea abies (L.) Karst.)

2018 ◽  
Vol 54 (9) ◽  
pp. 1040-1049
Author(s):  
V. M. Makeeva ◽  
A. V. Smurov ◽  
D. V. Politov ◽  
M. M. Belokon ◽  
Y. S. Belokon ◽  
...  
Forests ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 395 ◽  
Author(s):  
Ecaterina Apostol ◽  
Marius Budeanu

This study analysed the stability of the narrow-crowned Norway spruce (pendula form) compared with the classic form of spruce (pyramidalis form) in two half-sib field trials located in the Romanian Carpathians. From eight natural populations, representative of three of the four large spruce spread areas in Romania, open-pollinated seeds from 48 trees (24 pendula ideotype and 24 pyramidalis form) were collected to install the Maneciu and Soveja trials. In these trials, at age 25 years, measurements were performed for the following traits: tree height, breast height diameter, crown diameter, number of branches per whorl and dominant branch diameter. Some important traits were calculated: average volume per tree, trees’ slenderness, crown slenderness and branches’ finesse. Pearson’s simple correlations between the analysed traits were calculated and also the correlations between traits and geographic and climatic gradients of provenances’ origin. In addition, cores were collected to compare the wood density of the two forms of spruce. In both trials, but especially in the limitative environmental conditions of the Soveja trial, the narrow crowned form of Norway spruce (Picea abies f. pendula) presented more favourable average results than the normal crown spruce form for the most important stand stability traits: trees’ slenderness, wood density, branches’ diameter and branches’ finesse. Between spruce crown forms, in both trials, no significant differences were observed for the growth traits, but between trials, higher results resulted in optimal environmental conditions of the Măneciu test (+89% for the trees’ volume). The trees from different provenances and with specific forms of the crown reacted differently to the changing of the testing site, which required the adoption of maximum caution for decisions regarding the transfer of forest reproductive materials. The correlations between the analysed traits converge towards the adoption of a two-step breeding strategy, starting by selection of narrow crowned trees after stability traits.


2014 ◽  
Vol 75 (1) ◽  
pp. 47-54 ◽  
Author(s):  
Justyna Anna Nowakowska ◽  
Tadeusz Zachara ◽  
Agata Konecka

Abstract The genetic variability and biodiversity of tree populations ensure the stability and sustainability of forest ecosystems. New research tools based on molecular DNA markers enable precise characterisation of forest genetic resources, i.e. detection of different allele frequencies in mature trees and progeny populations. The paper describes the genetic structure of mature stands of Scots pine (Pinus sylvestris L.) in Oława Forest District and Norway spruce (Picea abies L. Karst.) in Jawor Forest District and stands of their respective progeny. In the Scots pine stand, there was a slight increase (0.6%) in heterozygosity level and a larger increase (4.9%) in the inbreeding coefficient of progeny trees. In the Norway spruce stand, despite a small reduction (0.9%) in heterozygosity, a similar increase (4.6%) in the inbreeding coefficient of progeny was revealed. In both stands, allele richness and the partition probability of basic clustering were high. Both pine and spruce adults and progeny trees were characterised by high levels of genetic similarity (96% and 79%, respectively). Gene flow between the mature and progeny populations was high (Nm > 1) for both Scots pine and Norway spruce. Conservation of the gene pool within forest tree stands requires an increase in the proportion of natural regeneration. To estimate the extent to which genes are transmitted between adult trees and their progeny, more studies are needed, especially taking into account the influence of silviculture measures, like selective tree cutting, on the genetic variability of the younger generation. These results confirm that the gene pool was conserved when transmitted between the stands studied, as well as highlight the usefulness of such a study for silvicultural purposes


Sign in / Sign up

Export Citation Format

Share Document