intrinsic protein
Recently Published Documents


TOTAL DOCUMENTS

267
(FIVE YEARS 33)

H-INDEX

51
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Safa Daoud ◽  
Mutasem Taha

Abstract Activity cliffs (ACs) are analogous compounds of significant affinity discrepancies against certain biotarget. We propose that the ACs phenomenon is protein-related and that the propensity of certain target to have ACs can be predicted by some intrinsic protein properties. We pursued this assumption by collecting the crystallographic structures of 84 protein kinases, each of which has numerous reported inhibitors (hundreds). Following data augmentation using synthetic minority oversampling technique (SMOTE), we attempted to correlate the presence/absence of ACs within the ligand pools of collected protein kinases with their corresponding protein properties using genetic algorithm (GA) coupled with variety of machine learners (MLs). Very good GA-ML models were achieved with accuracies of around 75% against external testing set. The models were further validated by Y-scrambling. Shapely additive explanations highlighted the significance of protein rotatable bonds, hydrophobic and acidic residues in relation to the presence of ACs. These results support the hypothesis that ACs are protein-related.


2021 ◽  
Vol 12 ◽  
Author(s):  
Juan J. Rios ◽  
Alvaro Lopez-Zaplana ◽  
Gloria Bárzana ◽  
Alberto Martinez-Alonso ◽  
Micaela Carvajal

Nanotechnology brings to agriculture new forms of fertilizer applications, which could be used to reduce environmental contamination and increase efficiency. In this study, foliar fertilization with nanoencapsulated boron (B) was studied in comparison to an ionic B (non-encapsulated) application in young B-deficient almond trees grown under a controlled environment. B movement within the plant in relation to the leaf gas exchange, water relations parameters, and root hydraulic conductance was measured. Also, the expression of aquaporins (AQPs) [plasma membrane intrinsic protein (PIP) and tonoplast intrinsic protein (TIP)] was studied in relation to water uptake and transport parameters to establish the effectiveness of the different B treatments. The obtained results were associated with a high concentration of observed B with nanoencapsulated B, provided by the higher permeability of carrier nanovesicles, which allowed B to reach the cell wall more efficiently. The increases in water uptake and transport obtained in these plants could be related to the role that this element played in the cell wall and the relationship that it could have in the regulation of the expression of AQPs and their involvement in water relations. Also, an increase in the expression of PIPs (mainly PIP2.2) to the applied nanoencapsulated B could be related to the need for B and water transport, and fine regulation of TIP1.1 in relation to B concentration in tissues provides an important feature in the remobilization of B within the cell.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yasunori Saitoh ◽  
Namiki Mitani-Ueno ◽  
Keisuke Saito ◽  
Kengo Matsuki ◽  
Sheng Huang ◽  
...  

AbstractSilicon (Si), the most abundant mineral element in the earth’s crust, is taken up by plant roots in the form of silicic acid through Low silicon rice 1 (Lsi1). Lsi1 belongs to the Nodulin 26-like intrinsic protein subfamily in aquaporin and shows high selectivity for silicic acid. To uncover the structural basis for this high selectivity, here we show the crystal structure of the rice Lsi1 at a resolution of 1.8 Å. The structure reveals transmembrane helical orientations different from other aquaporins, characterized by a unique, widely opened, and hydrophilic selectivity filter (SF) composed of five residues. Our structural, functional, and theoretical investigations provide a solid structural basis for the Si uptake mechanism in plants, which will contribute to secure and sustainable rice production by manipulating Lsi1 selectivity for different metalloids.


Biomolecules ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1413
Author(s):  
Giovanni Versace ◽  
Marta Palombo ◽  
Anna Menon ◽  
Vincenzo Scarlato ◽  
Davide Roncarati

The heat-shock response, a universal protective mechanism consisting of a transcriptional reprogramming of the cellular transcriptome, results in the accumulation of proteins which counteract the deleterious effects of heat-stress on cellular polypeptides. To quickly respond to thermal stress and trigger the heat-shock response, bacteria rely on different mechanisms to detect temperature variations, which can involve nearly all classes of biological molecules. In Campylobacter jejuni the response to heat-shock is transcriptionally controlled by a regulatory circuit involving two repressors, HspR and HrcA. In the present work we show that the heat-shock repressor HrcA acts as an intrinsic protein thermometer. We report that a temperature upshift up to 42°C negatively affects HrcA DNA-binding activity to a target promoter, a condition required for de-repression of regulated genes. Furthermore, we show that this impairment of HrcA binding at 42°C is irreversible in vitro, as DNA-binding was still not restored by reversing the incubation temperature to 37°C. On the other hand, we demonstrate that the DNA-binding activity of HspR, which controls, in combination with HrcA, the transcription of chaperones’ genes, is unaffected by heat-stress up to 45°C, portraying this master repressor as a rather stable protein. Additionally, we show that HrcA binding activity is enhanced by the chaperonin GroE, upon direct protein–protein interaction. In conclusion, the results presented in this work establish HrcA as a novel example of intrinsic heat-sensing transcriptional regulator, whose DNA-binding activity is positively modulated by the GroE chaperonin.


2021 ◽  
Author(s):  
Hafsa Amat-ur-Rasool ◽  
Ayesha Latif ◽  
Aneela Yasmeen ◽  
Naila Shahid ◽  
Saira Azam ◽  
...  

Abstract Background: Gossypium arboreum is a cotton crop native to tropical and subtropical regions that are naturally resistant to Cotton Leaf Curl Virus (CLCuV). However, its cultivation is unfavorable due to the lower quality and shorter fiber length of cotton when compared to the market leading Gossypium hirsutum. Plasma membrane intrinsic protein 2 (PIP2) is an aquaporin responsible for the transport of water and small molecules across cellular membranes. This fluid transport influences cell elongation and cotton fibre development. Hence, increased PIP2 expression may yield plants with enhanced fiber qualities including length. Methods and Results: To test this hypothesis, G. arboretum was transformed with a PIP2 gene construct (35SCpPIP2)using the Agrobacterium-mediated shoot apex cutting method. Relative expression of the CpPIP2 gene in transgenic plants increased up to 35-fold when compared with non-transgenic controls. Transgenic plants displayed a corresponding increase of staple length (up to 150%) when compared with non-transgenic controls. Transgene integration was examined using FISH and karyotyping and revealed the presence of a single transgene located on chromosome 6. Conclusion: Since G. arboreum is naturally whitefly and CLCuV resistant, this improvement of fiber length evidenced for CpPIP2 transgenic plants renders their crop production more economically viable.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 338
Author(s):  
Maroua Ben Amira ◽  
Mohamed Faize ◽  
Magnus Karlsson ◽  
Mukesh Dubey ◽  
Magdalena Frąc ◽  
...  

The major intrinsic protein (MIP) superfamily is a key part of the fungal transmembrane transport network. It facilitates the transport of water and low molecular weight solutes across biomembranes. The fungal uncharacterized X-Intrinsic Protein (XIP) subfamily includes the full protein diversity of MIP. Their biological functions still remain fully hypothetical. The aim of this study is still to deepen the diversity and the structure of the XIP subfamily in light of the MIP counterparts—the aquaporins (AQPs) and aquaglyceroporins (AQGPs)—and to describe for the first time their function in the development, biomass accumulation, and mycoparasitic aptitudes of the fungal bioagent Trichoderma atroviride. The fungus-XIP clade, with one member (TriatXIP), is one of the three clades of MIPs that make up the diversity of T. atroviride MIPs, along with the AQPs (three members) and the AQGPs (three members). TriatXIP resembles those of strict aquaporins, predicting water diffusion and possibly other small polar solutes due to particularly wider ar/R constriction with a Lysine substitution at the LE2 position. The XIP loss of function in ∆TriatXIP mutants slightly delays biomass accumulation but does not impact mycoparasitic activities. ∆TriatMIP forms colonies similar to wild type; however, the hyphae are slightly thinner and colonies produce rare chlamydospores in PDA and specific media, most of which are relatively small and exhibit abnormal morphologies. To better understand the molecular causes of these deviant phenotypes, a wide-metabolic survey of the ∆TriatXIPs demonstrates that the delayed growth kinetic, correlated to a decrease in respiration rate, is caused by perturbations in the pentose phosphate pathway. Furthermore, the null expression of the XIP gene strongly impacts the expression of four expressed MIP-encoding genes of T. atroviride, a plausible compensating effect which safeguards the physiological integrity and life cycle of the fungus. This paper offers an overview of the fungal XIP family in the biocontrol agent T. atroviride which will be useful for further functional analysis of this particular MIP subfamily in vegetative growth and the environmental stress response in fungi. Ultimately, these findings have implications for the ecophysiology of Trichoderma spp. in natural, agronomic, and industrial systems.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Chao Bai ◽  
Yuyan You ◽  
Xuefeng Liu ◽  
Maohua Xia ◽  
Wei Wang ◽  
...  

Abstract Background Cataracts are defects of the lens that cause progressive visual impairment and ultimately blindness in many vertebrate species. Most cataracts are age-related, but up to one third have an underlying genetic cause. Cataracts are common in captive zoo animals, but it is often unclear whether these are congenital or acquired (age-related) lesions. Results Here we used a functional candidate gene screening approach to identify mutations associated with cataracts in a captive giant panda (Ailuropoda melanoleuca). We screened 11 genes often associated with human cataracts and identified a novel missense mutation (c.686G > A) in the MIP gene encoding major intrinsic protein. This is expressed in the lens and normally accumulates in the plasma membrane of lens fiber cells, where it plays an important role in fluid transport and cell adhesion. The mutation causes the replacement of serine with asparagine (p.S229N) in the C-terminal tail of the protein, and modeling predicts that the mutation induces conformational changes that may interfere with lens permeability and cell–cell interactions. Conclusion The c.686G > A mutation was found in a captive giant panda with a unilateral cataract but not in 18 controls from diverse regions in China, suggesting it is most likely a genuine disease-associated mutation rather than a single-nucleotide polymorphism. The mutation could therefore serve as a new genetic marker to predict the risk of congenital cataracts in captive giant pandas.


Sign in / Sign up

Export Citation Format

Share Document