Change in the Optical Properties Near the Interface of Self-Focusing Nonlinear Media Depending on the Intensity of a Localized Light Beam

Author(s):  
S. E. Savotchenko
Open Physics ◽  
2012 ◽  
Vol 10 (4) ◽  
Author(s):  
Pawel Berczynski

AbstractThe method of paraxial complex geometrical optics (PCGO) is presented, which describes Gaussian beam (GB) diffraction and self-focusing in smoothly inhomogeneous and nonlinear saturable media of cylindrical symmetry. PCGO reduces the problem of Gaussian beam diffraction in nonlinear and inhomogeneous media to the system of the first order ordinary differential equations for the complex curvature of the wave front and for GB amplitude, which can be readily solved both analytically and numerically. As a result, PCGO radically simplifies the description of Gaussian beam diffraction in inhomogeneous and nonlinear media as compared to the numerical and analytical methods of nonlinear optics. The power of PCGO method is presented on the example of Gaussian beam evolution in logarithmically saturable medium with either focusing and defocusing refractive profile. Besides, the influence of initial curvature of the wave front on GB evolution in nonlinear saturable medium is discussed in this paper.


1994 ◽  
Vol 374 ◽  
Author(s):  
S. Shi ◽  
X. Q. Xin

AbstractCompounds WCu2OS3(PPh3)4 (I) and MoCu2OS3(PPh3)3 (II) were synthesized by reactions of (NH4)2MO2S2 (M = W, Mo), Cu2S and PPh3 in solid state for nonlinear optical studies. A wide transparent window (λ = 400 - 1000 nm) was observed for both clusters, which makes them attractive for nonlinear optical (NLO) applications. NLO properties of the clusters were studied with a 7-ns pulsed laser at 532 nm. Cluster I exhibits mainly optical self-focusing (n2 = 8 × 10-18 m2 W-1, as measured with an 1.2 × 10-4 M acetonitrile solution) with negligibly small nonlinear absorption. Cluster II exhibits both optical self-focusing (n2 = 5 × 10-17 m2 W-1, as measured with a 7.4 × 10-5 M acetonitrile solution) and nonlinear absorption (α2 = 2.6 × 10-10 m W-1). The third-order NLO susceptibilities (χ(3)) of the two clusters at the above-mentioned concentrations are 2 × 10-11 esu for I and 1.2 × 10-10 esu for II respectively. These nonlinear optical properties of the clusters were compared with those of cubic cage shaped and nest shaped clusters to reveal a qualitative structure/NLO property correlation.


2021 ◽  
Vol 12 (1) ◽  
pp. 372
Author(s):  
Duong Van Pham ◽  
Diep Van Nguyen ◽  
Tu Xuan Nguyen ◽  
Kieu Anh Thi Doan ◽  
Quan Minh Le ◽  
...  

Fluoride host materials doped with trivalent cerium ions have previously been demonstrated as successful laser materials in the ultraviolet wavelength region. However, the nonlinear optical properties of the fluoride hosts in this wavelength region have not been investigated yet, although nonlinearity could result in undesirable effects such as self-focusing and pulse distortion when these fluoride materials are used as gain media in high-power, ultrashort pulse laser oscillator and amplifier systems. In this work, the nonlinear refractive index of lithium calcium aluminum fluoride (LiCaAlF6), lithium strontium aluminum fluoride (LiSrAlF6), lanthanum fluoride (LaF3), and yttrium lithium fluoride (YLiF4) fluoride host materials are determined using the Kramers–Krönig relation model in the ultraviolet wavelength region. Self-focusing conditions, particularly at the peak laser emission wavelength of these materials, are further analyzed. Results show that LiCaAlF6 has the smallest nonlinear refractive index and self-focusing, making it an ideal host material under the conditions of ultrashort pulse and ultrahigh-power laser generation.


2020 ◽  
Vol 45 (3) ◽  
pp. 710 ◽  
Author(s):  
Huan Wang ◽  
Xiao-Ling Ji ◽  
Yu Deng ◽  
Xiao-Qing Li ◽  
Hong Yu

Sign in / Sign up

Export Citation Format

Share Document