polarization distribution
Recently Published Documents


TOTAL DOCUMENTS

153
(FIVE YEARS 27)

H-INDEX

23
(FIVE YEARS 2)

Author(s):  
Xiu Zhang ◽  
Zhenshi Chen ◽  
Dong Liu ◽  
Lei Wan ◽  
Xuekai Ma ◽  
...  

Abstract Transition metal dichalcogenides (TMDCs) monolayers are promising candidates for novel optoelectronic devices, because they exhibit unique combination of atomic-scale thickness, direct bandgap and ease of integration proporties. In this work, we manipulate the exciton propagation in WS2 monolayer integatd with a photonic crystal at room temperature. By coupling with the optical modes of the photonic crystal, the excitons can propagate along a particular direction by around∼10μm. Moreimportantly, the excitons propagate along the particular direction with locked linear polarization up to 60%. Our results pave the way to manipulate the polarization distribution and propagation of the excitons in the WS2 monolayer.


2021 ◽  
Author(s):  
XiaoBo Hu ◽  
Carmelo Rosales-Guzmán

Abstract Complex vector light modes with a spatial variant polarization distribution have become topical of late, enabling the development of novel applications in numerous research fields. Key to this is the remarkable similarities they hold with quantum entangled states, which arises from the non-separability between the spatial and polarisation degrees of freedom (DoF). As such, the demand for diversification of generation methods and characterization techniques have increased dramatically. Here we put forward a comprehensive tutorial about the use of DMDs in the generation and characterization of vector modes, providing details on the implementation of techniques that fully exploits the unsurpassed advantage of Digital Micromirrors Devices (DMDs), such as their high refresh rates and polarisation independence. We start by briefly describing the operating principles of DMD and follow with a thorough explanation of some of the methods to shape arbitrary vector modes. Finally, we describe some techniques aiming at the real-time characterization of vector beams. This tutorial highlights the value of DMDs as an alternative tool for the generation and characterization of complex vector light fields, of great relevance in a wide variety of applications.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Qinghua Song ◽  
Arthur Baroni ◽  
Pin Chieh Wu ◽  
Sébastien Chenot ◽  
Virginie Brandli ◽  
...  

AbstractIntensity and polarization are two fundamental components of light. Independent control of them is of tremendous interest in many applications. In this paper, we propose a general vectorial encryption method, which enables arbitrary far-field light distribution with the local polarization, including orientations and ellipticities, decoupling intensity from polarization across a broad bandwidth using geometric phase metasurfaces. By revamping the well-known iterative Fourier transform algorithm, we propose “à la carte” design of far-field intensity and polarization distribution with vectorial Fourier metasurfaces. A series of non-conventional vectorial field distribution, mimicking cylindrical vector beams in the sense that they share the same intensity profile but with different polarization distribution and a speckled phase distribution, is demonstrated. Vectorial Fourier optical metasurfaces may enable important applications in the area of complex light beam generation, secure optical data storage, steganography and optical communications.


Optica ◽  
2021 ◽  
Author(s):  
Gang Chen ◽  
Jian Gao ◽  
Shaokui Yan ◽  
Yi Zhou ◽  
Gaofeng Liang ◽  
...  

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Dongyi Wang ◽  
Feifei Liu ◽  
Tong Liu ◽  
Shulin Sun ◽  
Qiong He ◽  
...  

AbstractVectorial optical fields (VOFs) exhibiting arbitrarily designed wavefronts and polarization distributions are highly desired in photonics. However, current methods to generate them either require complicated setups or exhibit limited functionalities, which is unfavorable for integration-optics applications. Here, we propose a generic approach to efficiently generate arbitrary VOFs based on metasurfaces exhibiting full-matrix yet inhomogeneous Jones-matrix distributions. We illustrate our strategy with analytical calculations on a model system and an experimental demonstration of a meta-device that can simultaneously deflect light and manipulate its polarization. Based on these benchmark results, we next experimentally demonstrate the generation of a far-field VOF exhibiting both a vortex wavefront and an inhomogeneous polarization distribution. Finally, we design/fabricate a meta-device and experimentally demonstrate that it can generate a complex near-field VOF—a cylindrically polarized surface plasmon wave possessing orbital angular momentum—with an efficiency of ~34%. Our results establish an efficient and ultracompact platform for generating arbitrary predesigned VOFs in both the near- and far-fields, which may find many applications in optical manipulation and communications.


2021 ◽  
Author(s):  
Yuanyi Fan ◽  
Ran Zhang ◽  
Ze Liu ◽  
Jinkui Chu

<a></a>The angle of the polarization (AOP) and the degree of polarization (DOP) of the scattered skylight are symmetrically distributed concerning the solar meridian. Based on the symmetry of the skylight polarization distribution pattern, this paper proposes a novel skylight orientation sensor consists of a camera, an S-waveplate, and a linear polarizer. The skylight orientation sensor is using the image polarization encoding capability of the S-waveplate and the linear polarizer to convert the skylight polarization information into the image’s symmetry axis extraction, which has the advantages of no resolution loss and instantaneous field of view error. The symmetry axis in the image is consistent with the solar meridian. Therefore, the angle between the solar meridian and the skylight orientation sensor reference axis can be obtained without calculating the polarization information, which is also beneficial for real-time performance. The angle measurement accuracy and uncertainty of the skylight orientation sensor are verified by numerical simulation and outdoor experiments. The results demonstrate that the skylight orientation sensor has good application potential in autonomous navigation.


2021 ◽  
Author(s):  
Yuanyi Fan ◽  
Ran Zhang ◽  
Ze Liu ◽  
Jinkui Chu

<a></a>The angle of the polarization (AOP) and the degree of polarization (DOP) of the scattered skylight are symmetrically distributed concerning the solar meridian. Based on the symmetry of the skylight polarization distribution pattern, this paper proposes a novel skylight orientation sensor consists of a camera, an S-waveplate, and a linear polarizer. The skylight orientation sensor is using the image polarization encoding capability of the S-waveplate and the linear polarizer to convert the skylight polarization information into the image’s symmetry axis extraction, which has the advantages of no resolution loss and instantaneous field of view error. The symmetry axis in the image is consistent with the solar meridian. Therefore, the angle between the solar meridian and the skylight orientation sensor reference axis can be obtained without calculating the polarization information, which is also beneficial for real-time performance. The angle measurement accuracy and uncertainty of the skylight orientation sensor are verified by numerical simulation and outdoor experiments. The results demonstrate that the skylight orientation sensor has good application potential in autonomous navigation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohsen Ghaderi Goran Abad ◽  
Mohammad Mahmoudi

AbstractLaguerre-Gaussian (LG) beams contain a helical phase front with a doughnut-like intensity profile. We use the LG beam to introduce a rather simple method for generation of a vector beam (VB), a beam with spatially-dependent polarization in the beam cross section, via the nonlinear magneto-optical rotation (NMOR). We consider the NMOR of the polarization of a linearly polarized probe field passing through an inverted Y-type four-level quantum system interacting with a LG control field and a static magnetic field. It is shown that the polarization of the transmitted field is spatially distributed by the orbital angular momentum (OAM) of the LG control field, leading to generation of the VB with azimuthally symmetric polarization distribution. We show that the polarization and intensity distributions of the VB spatially vary by changing the OAMs of the LG control field. Moreover, the radial index of the LG control field has a major role in more spatially polarization distributing of the VB. It is shown that the intensity of the generated VBs in different points of the beam cross section can be controlled by the OAM as well as the radial index of the LG control field. However, the VB with highly spatially distributed can be generated for higher values of the radial index of LG control field. The analytical calculations determine the contribution of the different nonlinear (cross-Kerr effect) phenomena on the generation of the VB. We show that the VB is mainly generated via birefringence induced by the applied fields. Finally, we use asymmetric LG (aLG) beams for making the VBs with asymmetric polarization distribution. It is shown that by applying aLG beams, the azimuthal symmetry of the polarization distribution breaks and the asymmetric polarization distribution can be controlled by OAM and radial index of the aLG control field. The obtained results may find more interesting applications in fiber/free space optical communication to enhance the capacity of the information transmission.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Shuo Du ◽  
Zhe Liu ◽  
Chi Sun ◽  
Wei Zhu ◽  
Guangzhou Geng ◽  
...  

Abstract As an inherent characteristic of light, polarization plays important roles in information storage, display and even encryption. Metasurfaces, composed of specifically designed subwavelength units in a two-dimensional plane, offer a great convenience for polarization manipulation, yet improving their integrability and broadband fidelity remain significant challenges. Here, based on the combination of various subwavelength cross-nanofins (CNs), a new type of metasurface for multichannel hybrid polarization distribution in near-field is proposed. Sub-wavelength CN units with various waveplate (WP) functionalities, such as frequency-division multiplexing WP, half-WP and quarter-WP are implemented with high efficiency in broadband. High-resolution grayscale image encryption, multi-image storage and rapid polarization detection are demonstrated by encoding the WP pixels into single, double and four channels, respectively. All these applications possess good fidelity in an ultrabroad wavelength band from 1.2 to 1.9 µm, and the high degree of integrability, easy fabrication and multifunction make the CN-shaped WP pixels a promising candidate in optical device miniaturization, quantum applications and imaging technologies.


2021 ◽  
Author(s):  
Qinghua Song ◽  
Arthur Baroni ◽  
Pin Chieh Wu ◽  
Sébastien Chenot ◽  
Virginie Brandli ◽  
...  

Abstract Intensity and polarization are two fundamental components of light. Independently control of them is of tremendous interest in many applications. In this paper, we propose a general vectorial encryption method, which enables arbitrary far-field light distribution with the local polarization, including orientations and ellipticities, decoupling intensity from polarization across a broad bandwidth using geometric phase metasurfaces. By revamping the well-known iterative Fourier transform algorithm, we propose “à la carte” design of far-field intensity and polarization distribution with vectorial Fourier metasurfaces. A series of non-conventional vectorial field distribution, mimicking cylindrical vector beams in the sense that they share the same intensity profile but with different polarization distribution and a speckled phase distribution, is demonstrated. Vectorial Fourier optical metasurfaces may enable important applications in the area of complex light beam generation, secure optical data storage, steganography and optical communications.


Sign in / Sign up

Export Citation Format

Share Document