scholarly journals Studying the Nonlinear Optical Properties of Fluoride Laser Host Materials in the Ultraviolet Wavelength Region

2021 ◽  
Vol 12 (1) ◽  
pp. 372
Author(s):  
Duong Van Pham ◽  
Diep Van Nguyen ◽  
Tu Xuan Nguyen ◽  
Kieu Anh Thi Doan ◽  
Quan Minh Le ◽  
...  

Fluoride host materials doped with trivalent cerium ions have previously been demonstrated as successful laser materials in the ultraviolet wavelength region. However, the nonlinear optical properties of the fluoride hosts in this wavelength region have not been investigated yet, although nonlinearity could result in undesirable effects such as self-focusing and pulse distortion when these fluoride materials are used as gain media in high-power, ultrashort pulse laser oscillator and amplifier systems. In this work, the nonlinear refractive index of lithium calcium aluminum fluoride (LiCaAlF6), lithium strontium aluminum fluoride (LiSrAlF6), lanthanum fluoride (LaF3), and yttrium lithium fluoride (YLiF4) fluoride host materials are determined using the Kramers–Krönig relation model in the ultraviolet wavelength region. Self-focusing conditions, particularly at the peak laser emission wavelength of these materials, are further analyzed. Results show that LiCaAlF6 has the smallest nonlinear refractive index and self-focusing, making it an ideal host material under the conditions of ultrashort pulse and ultrahigh-power laser generation.

PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0257808
Author(s):  
Dian Alwani Zainuri ◽  
Mundzir Abdullah ◽  
Muhamad Fikri Zaini ◽  
Hazri Bakhtiar ◽  
Suhana Arshad ◽  
...  

The Ultraviolet-visible (UV-Vis) spectra indicate that anthracenyl chalcones (ACs) have high maximum wavelengths and good transparency windows for optical applications and are suitable for optoelectronic applications owing to their HOMO–LUMO energy gaps (2.93 and 2.76 eV). Different donor substituents on the AC affect their dipole moments and nonlinear optical (NLO) responses. The positive, negative, and neutral electrostatic potential regions of the molecules were identified using molecular electrostatic potential (MEP). The stability of the molecule on account of hyperconjugative interactions and accompanying charge delocalization was analyzed using natural bond orbital (NBO) analysis. Open and closed aperture Z-scans were performed using a continuous-wave frequency-doubled diode-pumped solid-state (DPSS) laser to measure the nonlinear absorption and nonlinear refractive index coefficients, respectively. The valley-to-peak profile of AC indicated a negative nonlinear refractive index coefficient. The obtained single crystals possess reverse saturation absorption due to excited-state absorption. The structural and nonlinear optical properties of the molecules have been discussed, along with the role of anthracene substitution for enhancing the nonlinear optical properties. The calculated third-order susceptibility value was 1.10 x10-4 esu at an intensity of 4.1 kW/cm2, higher than the reported values for related chalcone derivatives. The NLO response for both ACs offers excellent potential in optical switching and limiting applications.


2021 ◽  
pp. 1-7
Author(s):  
Bassam Abbas ◽  
Mohammad Alshikh Khalil

The Z-scan technique was employed to explore the third-order nonlinear optical properties of disperse red 13 organic chromophore solutions in tetrahydrofuran. A continuous-wave He–Ne laser (632.8 nm) was used as a source of irradiation. The nonlinear absorption and nonlinear refractive index coefficients of this dye were investigated. The results showed that this dye has a good nonlinear response with its real and imaginary quantities of third-order susceptibility. The solutions showed negative nonlinear refraction. The best obtained value of the third-order susceptibility was 6.37 × 10–3 esu at a dye concentration of 3.15 × 10–4 mol/L. Moreover, the nonlinear optical properties were enhanced with higher dye concentrations, and an elevated trend in nonlinear absorption and nonlinear refractive index coefficients was observed. Also, it was found that the reverse saturable absorption was the main mechanism responsible for the two-photon absorption effect in DSR13/THF samples.


Author(s):  
Imad Al-Deen Hussein Ali Al-Saidi ◽  
Hussein Falih Hussein ◽  
Numan Sleem Hashim

Poly (3 - Hexylthiophene - Co - Thiophene) copolymer was prepared by using the addition polymerization method. The Nonlinear optical properties and the behavior of the optical power limiting of the prepared polymer blend poly (3HT- Co - Th) - PMMA films were studied by using the z - scan technique for different weight ratios of the copolymer poly (3HT- Co - Th). In the present work, a continuous wave (CW) diode - pumped solid - state laser (DPSSL) of wavelengths 532 nm was used for the irradiation of the prepared film samples. The nonlinear optical parameters such as, the nonlinear refractive index (n2), the nonlinear absorption coefficient (β), and the      third - order - nonlinear optical susceptibility (χ (3)) of the polymer blend poly (3HT- Co - Th) - PMMA films were determined for different weight ratios of the copolymer poly (3HT- Co - Th). It is observed that the polymer blend poly (3HT - Co - Th) - PMMA films exhibit saturable absorption (SA) and self - defocusing effects, and this gives an indication that both, the nonlinear refractive index (n2) and the nonlinear absorption coefficient (β), have negative values. The obtained results indicate that the prepared polymer blend poly (3HT - Co - Th) - PMMA films are promising materials and can be considered as suitable materials for different optical and electronic applications.


2019 ◽  
Vol 28 (01) ◽  
pp. 1950005 ◽  
Author(s):  
Hamid Darabi ◽  
Mehdi Adelifard ◽  
Yasser Rajabi

In this work, Silicon oxide (SiO2) nanoparticles, graphene oxide nanosheet (GO) and GO–SiO2 nanohybrid composites have been synthesized. The role of GO concentration in the starting solution was investigated and correlated to the morphological, structural and optical properties of the studied samples. The structural studies for nanohybrid composites showed that by increasing GO:weight ratio from 0.5 to 2.0, not only does the SiO2 crystalline phase change from cubic to orthorhombic, but the structure of GO also transformed to RGO. The related FESEM images indicate that GO sheets are well-covered by SiO2 nanoparticles with very small grain size and that the accumulation of nanoparticles on each sheet has a high density. Linear Optical measurements showed two optical band gaps of [Formula: see text][Formula: see text]eV and 5.3[Formula: see text]eV for SiO2 nanoparticles, and band gap value of 4.15[Formula: see text]eV for GO nanosheets, which it reduces to 3.3[Formula: see text]eV after formation of the nanohybrid composite with GO: SiO2 weight ratio of 2.0. The nonlinear optical properties of GO–SiO2 with different weight ratio are measured using Z-scan technique. The results showed that the nonlinear refractive index of SiO2 and GO nanoparticles and nanohybrid composite (0.5:1,1:1,2:1) ([Formula: see text]–[Formula: see text]) changed and has a negative sign. It was observed that the nonlinear refractive index changes in different ratios of compounds. Experimental results show that after the formation of the composite, the nonlinear refractive index shows a significant increase in the presence and effectiveness of the GO.


2014 ◽  
Vol 1025-1026 ◽  
pp. 776-781 ◽  
Author(s):  
Dmitriy Proschenko ◽  
Alexandr Mayor ◽  
Oleg Bukin ◽  
Sergey Golik ◽  
Irina Postnova ◽  
...  

Nonlinear refractive indexes and two-photon absorption coefficients of new biosilicate nanocomposite materials based on precursor tetrakis (2-hydroxyethyl) orthosilicate (Si-precursor THEOS) were determined by created portative automation measuring complex based on Z-scan technique. Influence of different additives on nonlinear optical properties such media is considered. Energy thresholds of forming filaments and the efficiency of conversion initial radiation in supercontinuum in the range 400-700 nm are considered.


RSC Advances ◽  
2016 ◽  
Vol 6 (18) ◽  
pp. 14490-14495 ◽  
Author(s):  
Duanliang Wang ◽  
Tingbin Li ◽  
Shenglai Wang ◽  
Jiyang Wang ◽  
Zhengping Wang ◽  
...  

The nonlinear refractive index n2 is an important parameter for the nonlinear optical properties of a medium. Especially for the anisotropic media, the nonlinear refractive index is closely related with the direction.


2019 ◽  
Vol 33 (36) ◽  
pp. 1950456 ◽  
Author(s):  
Mahmoud Sh. Hussain ◽  
Qusay M. A. Hassan ◽  
H. A. Sultan ◽  
Ahmed S. Al-Asadi ◽  
Hani T. Chayed ◽  
...  

The nonlinear optical properties of a nanoparticle polyaniline/polyacrylonitrile (PAn/PANr) copolymer newly prepared via experimental and theoretical findings are reported. Diffraction ring patterns result in the far field when a CW, visible, 473 nm, low power laser beam traverses the solution of PAn/PANr in the solvent ethanol. The diffraction ring patterns are usually used to estimate the nonlinear refractive index while the Z-scan is used to measure both nonlinear refractive index and its sign and nonlinear absorption coefficient. The experimentally observed ring patterns are numerically reproduced via the use of the Fresnel–Kirchhoff procedure. Good agreement between experimental findings and the numerical ones are obtained. The obtained diffraction ring patterns suffer modification in the vertical direction due to convection current as a result of local heating of the sample and the presence of gravity.


2016 ◽  
Vol 78 (3) ◽  
Author(s):  
Haider Mohammed Shanshool ◽  
Muhammad Yahaya ◽  
Wan Mahmood Mat Yunus ◽  
Ibtisam Yahya Abdullah

The study of nonlinear optical properties of polymer nanocomposites has been given increasing attention due its application in laser, communication and data storage technology. There is a need to enhance the understanding of all photonics technologies. In the current work, PMMA-ZnO nanocomposites as foils and as thin films have been successfully prepared. Casting method and spin coating were used to prepare them respectively. Nanocomposites were prepared by mixing ZnO nanoparticles with polymethyl methacrylate (PMMA) as the polymer matrix. Different contents of ZnO nanoparticles were used as the filler in the nanocomposites. The absorbance spectra of the samples were obtained. The linear absorption coefficient was calculated. The nonlinear refractive index and nonlinear absorption coefficient were investigated using a single beam Z-scan technique. A Q-switched Nd-YAG pulsed laser   (532 nm, 7 ns, 5 Hz) was used as a light source. Both thin film’s and foil’s samples showed peak absorption at 375 nm and increasing absorption with ZnO nanoparticles concentration. The nonlinear refractive index was in the order of 10-11 cm2/W for thin film samples and 10-12 cm2 /W for foil’s samples with a negative sign. In contrast, the nonlinear absorption coefficient is in the order of 10-6 cm/W and 10-7 cm /W for thin film and foil respectively. The figures of merit W and T were calculated in order to evaluate the suitability of the samples as optical switching device .However; they unsatisfied the requirements of optical switching devices but they can be considered as an excellent candidate for optical limiting.


2020 ◽  
pp. 131-138

The nonlinear optical properties of pepper oil are studied by diffraction ring patterns and Z-scan techniques with continuous wave beam from solid state laser at 473 nm wavelength. The nonlinear refractive index of the sample is calculated by both techniques. The sample show high nonlinear refractive index. Based on Fresnel-Kirchhoff diffraction integral, the far-field intensity distributions of ring patterns have been calculated. It is found that the experimental results are in good agreement with the theoretical results. Also the optical limiting property of pepper oil is reported. The results obtained in this study prove that the pepper oil has applications in nonlinear optical devices.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1225
Author(s):  
Ali Atta ◽  
Mostufa M. Abdelhamied ◽  
Ahmed M. Abdelreheem ◽  
Mohamed R. Berber

In order to potentiate implementations in optical energy applications, flexible polymer composite films comprising methyl cellulose (MC), polyaniline (PANI) and silver nanoparticles (AgNPs) were successfully fabricated through a cast preparation method. The composite structure of the fabricated film was confirmed by X-ray diffraction and infrared spectroscopy, indicating a successful incorporation of AgNPs into the MC/PANI blend. The scanning electron microscope (SEM) images have indicated a homogenous loading and dispersion of AgNPs into the MC/PANI blend. The optical parameters such as band gap (Eg), absorption edge (Ed), number of carbon cluster (N) and Urbach energy (Eu) of pure MC polymer, MC/PANI blend and MC/PANI/Ag films were determined using the UV optical absorbance. The effects of AgNPs and PANI on MC polymer linear optical (LO) and nonlinear optical (NLO) parameters including reflection extinction coefficient, refractive index, dielectric constant, nonlinear refractive index, and nonlinear susceptibility are studied. The results showed a decrease in the band gap of MC/PANI/AgNPs compared to the pure MC film. Meanwhile, the estimated carbon cluster number enhanced with the incorporation of the AgNPs. The inclusion of AgNPs and PANI has enhanced the optical properties of the MC polymer, providing a new composite suitable for energy conversion systems, solar cells, biosensors, and nonlinear optical applications.


Sign in / Sign up

Export Citation Format

Share Document