Specific features of massive sulfide ore formation under submarine conditions at various depths

2007 ◽  
Vol 415 (1) ◽  
pp. 751-754
Author(s):  
A. I. Malyshev
2015 ◽  
Vol 32 (3) ◽  
pp. 161-169 ◽  
Author(s):  
H. Abdollahi ◽  
P. Karimi ◽  
A. Amini ◽  
A. Akcil
Keyword(s):  

Minerals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 629
Author(s):  
Olga Yakubovich ◽  
Mary Podolskaya ◽  
Ilya Vikentyev ◽  
Elena Fokina ◽  
Alexander Kotov

We report on the application of the U-Th-He method for the direct dating of pyrite and provide an original methodological approach for measurement of U, Th and He in single grains without loss of parent nuclides during thermal extraction of He. The U-Th-He age of ten samples of high-crystalline stoichiometric pyrite from unoxidized massive ores of the Uzelga volcanogenic massive sulfide (VMS) deposit, South Urals, is 382 ± 12 Ma (2σ) (U concentrations ~1–5 ppm; 4He ~10−4 cm3 STP g−1). This age is consistent with independent (biostratigraphic) estimations of the age of ore formation (ca, 389–380 Ma) and is remarkably older than the probable age of the regional prehnite-pumpellyite facies metamorphism (~340–345 Ma). Our results indicate that the U-Th-He dating of ~1 mg weight pyrite sample is possible and open new perspectives for the dating of ore deposits. The relative simplicity of U-Th-He dating in comparison with other geochronological methods makes this approach interesting for further application.


1969 ◽  
Vol 6 (4) ◽  
pp. 781-781
Author(s):  
Richard Darling ◽  
G. G. Suffel

Contacts between metadiabase dikes and massive sulfide ore in the Horne Mine exhibit patterns of dike chill and sulfide alteration that show the dikes to be younger than the sulfides. The sulfides are thus older than all intrusive igneous rocks in the mine area and an Archean volcanogenic origin for these ores seems likely.


Geophysics ◽  
2012 ◽  
Vol 77 (5) ◽  
pp. WC3-WC13 ◽  
Author(s):  
Christof Mueller ◽  
Gilles Bellefleur ◽  
Erick Adam ◽  
Gervais Perron ◽  
Marko Mah ◽  
...  

The Downhole Seismic Imaging consortium conducted two consecutive vertical seismic profiling surveys in the Norman West mining camp (Sudbury, Canada) in 1998 and 1999. These were aimed toward imaging a massive sulfide ore deposit situated within the footwall of the Sudbury Igneous Complex (SIC). Three-component seismic data were acquired in four boreholes with variable signal-to-noise ratio and poor polarization quality. Consequently, the images suffered from strong azimuthal ambiguity. A strike filter, passing only reflections originating from within the SIC, was applied during migration to enhance interpretability of the images obtained. Migrated images showed structures correlating with the known position of an ore deposit located 1800 m away from one borehole (N40). Diffraction coherency migration enhanced the image of the deposit, and suggested strong seismic scattering from within the footwall of the SIC.


1968 ◽  
Vol 5 (6) ◽  
pp. 1387-1395 ◽  
Author(s):  
K. Kanehira ◽  
D. Bachinski

The Whalesback Mine is one of many copper deposits associated with Ordovician volcanic rocks in the Notre Dame Bay area, Newfoundland. The deposit consists of veins, pods, and disseminated sulfides localized within a highly chloritized shear zone cutting basaltic pillow lavas. Porphyritic dikes cut the shear zone, sulfide deposit, and the surrounding pillow lavas; all of the rocks, including the sulfide-rich rocks, have been regionally metamorphosed. Ore minerals, in decreasing order of abundance, include pyrite, chalcopyrite, pyrrhotite, sphalerite, mackinawite, pentlandite, magnetite, cubanite, galena, and ilmenite. Marcasite, covellite, and goethite are supergene minerals. Chlorite and quartz are the predominant gangue minerals. Muscovite, carbonates, sphene, albite, and epidote are minor constituents. Banding and streaking of sulfides in massive ores, crushed pyrite, and the local occurrence of pressure-shadow phenomena in the ore are indicative of shearing stress post-dating original sulfide ore formation. Present sulfide assemblages are compatible with relatively low temperatures and are the result of re-equilibration and internal reaction among the sulfides with decreasing temperature.


2004 ◽  
Vol 42 (2) ◽  
pp. 651-665 ◽  
Author(s):  
I. V. Vikentyev ◽  
M. A. Yudovskaya ◽  
A. V. Mokhov ◽  
A. L. Kerzin ◽  
A. I. Tsepin

Sign in / Sign up

Export Citation Format

Share Document