Modeling the Earth-pole motion for a short period of time

2009 ◽  
Vol 54 (5) ◽  
pp. 233-237
Author(s):  
L. D. Akulenko ◽  
Yu. G. Markov ◽  
V. V. Perepelkin
2020 ◽  
Author(s):  
Yan Wai

<p><strong>Accounting for non-stationary effects in the model of the Earth’s pole motion</strong></p><p>Wai Yan Soe, Rumyantsev D.S., Perepelkin V.V.</p><p> </p><p>Nowadays the problem of constructing a model of the Earth pole motion is relevant both in theoretical and in applied aspects. The main difficulty of accurately describing the Earth pole motion is that it has non-stationary perturbations leading to the changes in both the average parameters of its motion and the motion as a whole.</p><p>The main process of the Earth pole coordinates fluctuations is the sum of the quasi periodic Chandler component and annual one. The approximation of the Earth pole motion is generally accepted to be a few parametric two-frequency model with constant coefficients. Relatively slow changes in the parameters of the Chandler and annual components make it possible to use this approximation in the time intervals of 6–7 years, that is, during the period of the Chandler and annual components modulation. This model has low algorithmic complexity and describes the main process of pole oscillations with acceptable accuracy.</p><p>However, due to the non-stationary perturbations there are effects in the Chandler and annual components that are not typical for a simple dynamical system that is described by linear differential equations with constant coefficients. Such changes can also be observed in the dissipative systems with not only with the amplitude variations but also when oscillation process is in steady-state condition [1].</p><p>In this work the effect of changing in the Earth pole oscillatory mode is revealed, which consists in a jump-like shift in the average frequency of the pole around the midpoint (the motion of the Earth pole midpoint is a pole trend of a long-period and secular nature), which leads to a change in the average speed of its motion.</p><p>A method is proposed to determine the moment when the average frequency is shifted, which is important for refining the forecast model of the Earth pole motion. Using this method a modified model of pole motion is developed and the dynamic effects in its motion are considered, caused by the change in the amplitudes ratio of the Chandler and annual harmonics.</p><p><strong>References</strong></p><p>[1] Barkin M.Yu., Krylov S.S., Perepelkin V.V. Modeling and analysis of the Earth pole motion with nonstationary perturbations. IOP Conf. Series: Journal of Physics: Conf. Series 1301 (2019) 012005; doi:10.1088/1742-6596/1301/1/012005</p><p> </p>


1962 ◽  
Vol 14 ◽  
pp. 133-148 ◽  
Author(s):  
Harold C. Urey

During the last 10 years, the writer has presented evidence indicating that the Moon was captured by the Earth and that the large collisions with its surface occurred within a surprisingly short period of time. These observations have been a continuous preoccupation during the past years and some explanation that seemed physically possible and reasonably probable has been sought.


Universe ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 10
Author(s):  
Maddalena Mochi ◽  
Giacomo Tommei

The solar system is populated with, other than planets, a wide variety of minor bodies, the majority of which are represented by asteroids. Most of their orbits are comprised of those between Mars and Jupiter, thus forming a population named Main Belt. However, some asteroids can run on trajectories that come close to, or even intersect, the orbit of the Earth. These objects are known as Near Earth Asteroids (NEAs) or Near Earth Objects (NEOs) and may entail a risk of collision with our planet. Predicting the occurrence of such collisions as early as possible is the task of Impact Monitoring (IM). Dedicated algorithms are in charge of orbit determination and risk assessment for any detected NEO, but their efficiency is limited in cases in which the object has been observed for a short period of time, as is the case with newly discovered asteroids and, more worryingly, imminent impactors: objects due to hit the Earth, detected only a few days or hours in advance of impacts. This timespan might be too short to take any effective safety countermeasure. For this reason, a necessary improvement of current observation capabilities is underway through the construction of dedicated telescopes, e.g., the NEO Survey Telescope (NEOSTEL), also known as “Fly-Eye”. Thanks to these developments, the number of discovered NEOs and, consequently, imminent impactors detected per year, is expected to increase, thus requiring an improvement of the methods and algorithms used to handle such cases. In this paper we present two new tools, based on the Admissible Region (AR) concept, dedicated to the observers, aiming to facilitate the planning of follow-up observations of NEOs by rapidly assessing the possibility of them being imminent impactors and the remaining visibility time from any given station.


2017 ◽  
Vol 62 (6) ◽  
pp. 318-322 ◽  
Author(s):  
Yu. G. Markov ◽  
V. V. Perepelkin ◽  
A. S. Filippova
Keyword(s):  

2005 ◽  
Vol 13 ◽  
pp. 763-763
Author(s):  
Donald B. Campbell ◽  
John K. Harmon ◽  
Micael C. Nolan ◽  
Steven J. Ostro

Nine comets have been detected with either the Arecibo (12.6 cm wavelength) or Goldstone (3.5 cm) radar systems. Included are six nucleus detections and five detections of echoes from coma grains. The radar backscatter cross sections measured for the nuclei correlate well with independent estimates of their sizes and are indicative of surface densities in the range of 0.5 to 1.0 g cm-3. Like most asteroids, comets appear to have surfaces that are very rough at scales much larger than the radar wavelength. Coma echo models can explain the radar cross sections using grain size distributions that include a substantial population of cm-sized grains. A long term goal of the cometary radar program has been the high resolution imaging of a cometary nucleus. Eleven short period comets are potentially detectable over the next two decades a few of which may be suitable for imaging. We are always waiting for the arrival of a new comet with an orbit that brings it within 0.1 AU of the earth.


2019 ◽  
Vol 1301 ◽  
pp. 012011
Author(s):  
L D Akulenko ◽  
V N Pochukaev ◽  
V V Perepelkin ◽  
A S Filippova

1972 ◽  
Vol 45 ◽  
pp. 431-436 ◽  
Author(s):  
G. A. Chebotarev ◽  
N. A. Belyaev ◽  
R. P. Eremenko

The evolution of the orbits of 19 asteroids of particular interest has been studied over the interval 1660–2060, perturbations by Venus to Pluto being taken into account. Information was obtained about the encounters with Venus, the Earth, and Mars. A few approaches of Hidalgo to Jupiter were noted. In distinction to the orbits of short-period comets, the orbits of the 19 asteroids are stable throughout the 400-yr interval.


Sign in / Sign up

Export Citation Format

Share Document