A structured-light method for the measurement of deformations in fuel assemblies in the cooling ponds of nuclear power plants

2012 ◽  
Vol 48 (12) ◽  
pp. 705-711 ◽  
Author(s):  
P. S. Zavyalov ◽  
E. S. Senchenko ◽  
L. V. Finogenov ◽  
D. R. Khakimov
2021 ◽  
Vol 7 (1) ◽  
pp. 9-13
Author(s):  
David A. Hakobyan ◽  
Victor I. Slobodchuk

The problems of reprocessing and long-term storage of spent nuclear fuel (SNF) at nuclear power plants with RBMK reactors have not been fully resolved so far. For this reason, nuclear power plants are forced to search for new options for the disposal of spent fuel, which can provide at least temporary SNF storage. One of the possible solutions to this problem is to switch to compacted SNF storage in reactor spent fuel pools (SFPs). As the number of spent fuel assemblies (SFAs) in SFPs increases, a greater amount of heat is released. In addition, no less important is the fact that a place for emergency FA discharging should be provided in SFPs. The paper presents the results of a numerical simulation of the temperature conditions in SFPs both for compacted SNF storage and for emergency FA discharging. Several types of disturbances in normal SFP cooling mode are considered, including partial loss of cooling water and exposure of SFAs. The simulation was performed using the ANSYS CFX software tool. Estimates were made of the time for heating water to the boiling point, as well as the time for heating the cladding of the fuel elements to a temperature of 650 °С. The most critical conditions are observed in the emergency FA discharging compartment. The results obtained make it possible to estimate the time that the personnel have to restore normal cooling mode of the spent fuel pool until the maximum temperature for water and spent fuel assemblies is reached.


Author(s):  
Lihua Wang ◽  
Qingxiang Yang ◽  
Ping Yang ◽  
Jiazheng Liu ◽  
Libing Zhu ◽  
...  

Due to debris in the coolant against clad, fuel clad wear, fuel handling fault and so on, fuel rods maybe be damaged during the operation of nuclear power plants, in order that the fuel assemblies with damaged fuel rods are discharged before scheduled. If the damaged fuel assemblies are not reloaded into the core of the nuclear power plant, the fuel utilization decreases and the economy of the nuclear power plant is partly lost. For retrieving the loss of the economy, the damaged fuel assemblies can be repaired by replacing damaged fuel rods with dummy rods which don’t include fissile nuclides. Then, the repaired fuel assemblies can be reloaded into the core. As the repaired fuel assemblies are different with the normal fuel assemblies, especially the number of the damaged fuel rods is considerable, a whole quantitative analysis is very necessary to evaluate the effects from the reuse of the repaired fuel assemblies. In this paper, a full scope evaluation of reload design are performed including nuclear design, fuel design, thermal hydraulic design and safety evaluation, and some necessary improvements are done for the software system, design methods and progress which have been used in the normal reload design. As results, an integrated evaluation technique is developed to evaluate the feasibility and safety of reusing the repaired fuel assemblies, and the key effects due to the reuse of the repaired fuel assemblies are extracted, and the different effects are studied for the different materials of the dummy rods which can be used to conduct how to choose the proper material of dummy rods. In addition, this technique has been successfully applied in the engineering and the loss of economy due to the damage of fuel assemblies was retrieved partly. Therefore, the integrated evaluation technique has also important directive to other nuclear power plants if the repaired fuel assemblies are planned to reuse.


2019 ◽  
Vol 5 (1) ◽  
pp. 9-15
Author(s):  
Taha M. Hashlamoun ◽  
Sergey B. Vygovsky ◽  
Sergey T. Leskin ◽  
A. Safa Duman

This article presents the results of research, that were focused on determining the optimal parameters of the extension of (reactor life-time) reactor fuel cycle in order to reduce the total operating costs of nuclear power plants during the transition from 12-month reactor fuel cycle to 18-month fuel cycle. The relevance of the research is related to the fact that, in recent years, there is a transition at all operating nuclear power plants VVER-1000 (1200) from 12-month reactor fuel cycle to extended 18-month fuel cycle. At the same time, represent the interests to solve the problem of conservation the extension of reactor life-time while reducing the number of loaded fuel assemblies with fresh fuel assemblies, which would reduce the total operating, and fuel costs. Search for solutions of this problem is associated with mandatory implementation of all requirements for the safe operation of the reactor and the reduction of the maximum fast neutron fluence on the reactor vessel in comparison with its value at the operating nuclear power plants. In the present work, with using the program PROSTOR software complex researched the neutron-physical characteristics of the core at the nominal parameters of the VVER-1200 reactor through the implementation of various fuel cycle strategies. The article developed various schemes of fuel-reloading for an 18-month fuel cycle with a different number of fuel assemblies. The article carries out a comparative analysis of the main parameters in the core for fuel-reloading schemes options of an 18- and 12-month fuel cycle with each other. Determine the minimum amount of fuel assemblies and provide the necessary duration of the reactor life-time for 18-month fuel cycle with using the extension of reactor life-time by reducing the power at the end of the reactor cycle to 70% of the nominal power. In the article, the arrangements of fuel assemblies were developed to provide limitations of local power by volume of the core, which reduce the fluence of fast neutrons on the reactor vessel in comparison with the projected value of the fluence. This article shows that the 18-month fuel cycle for the VVER-1200 reactor is more economical than the 12-month fuel cycle. These studies were carried out for the VVER-1200 reactor at the power of 100% of the nominal.


2016 ◽  
pp. 22-26
Author(s):  
Ye. Bilodid ◽  
Yu. Kovbasenko

The paper presents comparison of regular TVSA with average enrichment of 4,386% and hypothetical TVSA with enrichment of 10% based on design parameters and materials of TVSA fuel assemblies produced by TVEL (Russia), which today are widely used at nuclear power plants in Ukraine. It is shown that implementation of new fuel assemblies will result in improved use of fuel and increase of installed capability factor. At the same time, fresh and spent fuel management systems shall be modernized to meet relevant nuclear safety criteria. The paper analyzes possible criticality initiation at different stages of severe accidents related to core melt and using fuel with higher enrichment.


2020 ◽  
Vol 6 (4) ◽  
pp. 307-312
Author(s):  
Igor A. Evdokimov ◽  
Andrey G. Khromov ◽  
Petr M. Kalinichev ◽  
Vladimir V. Likhanskii ◽  
Aleksey A. Kovalishin ◽  
...  

Fuel failures may occur during operation of nuclear power plants. One of the possible and most severe consequences of a fuel failure is that fuel may be washed out from the leaking fuel rod into the coolant. Reliable detection of fuel washout is important for handling of leaking fuel assemblies after irradiation is over. Detection of fuel washout is achievable in the framework of coolant activity evaluation during reactor operation. For this purpose, 134I activity is historically used in WWER power units. However, observed 134I activity may increase during operation even if leaking fuel in the core is absent, and fuel deposits are the only source of the fission products release. The paper describes a criterion which enables to reveal the cases when the increase in 134I activity results from the fuel washout from the leaking fuel rods during operation of the WWER-type reactor. Some examples of applications at nuclear power plants are discussed.


Sign in / Sign up

Export Citation Format

Share Document