Acoustic pulse interaction with a submerged functionally graded material hollow cylinder

2011 ◽  
Vol 57 (1) ◽  
pp. 20-35 ◽  
Author(s):  
Seyyed M. Hasheminejad ◽  
Saeed Abbasion ◽  
Yaser Mirzaei
2017 ◽  
Vol 139 (5) ◽  
Author(s):  
M. Jabbari ◽  
M. A. Kiani

In this paper, the exact solution of the equation of transient heat conduction in two dimensions for a hollow cylinder made of functionally graded material (FGM) and piezoelectric layers is developed. Temperature distribution, as function of radial and circumferential directions and time, is analytically obtained for different layers, using the method of separation of variables and generalized Bessel function. The FGM properties are assumed to depend on the variable r, and they are expressed as power functions of r.


2015 ◽  
Vol 45 (2) ◽  
pp. 3-20 ◽  
Author(s):  
Masoud Asgari

Abstract A thick hollow cylinder with finite length made of two- dimensional functionally graded material (2D-FGM) is considered and its natural modes are determined, based on great importance of mode shapes information in order to understand vibration behaviour of structures. Three dimensional theory of elasticity implemented for problem formulation, since mode shapes of a thick cylinder are three dimensional even with axisymmetric conditions. The axisymmetric conditions are assumed for the 2D-FGM cylinder. The material properties of the cylinder are varied in the radial and axial directions, with power law functions. Effects of volume fraction distribution on the different types of symmetric mode shapes configuration and vibration behaviour of a simply supported cylinder are analyzed. Three dimensional equations of motion are used and the eigen value problem is developed, based on direct variation method.


2012 ◽  
Vol 47 (3) ◽  
pp. 315-325 ◽  
Author(s):  
Hong-Liang Dai ◽  
Yan-Ni Rao ◽  
Hao-Jie Jiang

In this paper, a novel numerical method is presented to analyze the thermoelastic dynamic response of a long hollow cylinder made of functionally graded materials under radially symmetric dynamic mechanical and thermal loadings. That is utilizing finite difference method and Newmark method to solve the governing equation. The material of the functionally graded material hollow cylinder is assumed to change continuously along the thickness according to power-law distribution, except for a constant Poisson’s ratio, and the thermal boundary condition without internal heat source is considered. Comparisons between this paper’s results and the corresponding analytical results validate the solution proposed in this paper. Finally, the functionally graded material hollow cylinder under constant load and impulsive load are discussed in detail and many valuable thermoelastic dynamic characteristics are revealed.


Sign in / Sign up

Export Citation Format

Share Document