scholarly journals Two Dimensional Functionally Graded Material Finite Thick Hollow Cylinder Axisymmetric Vibration Mode Shapes Analysis Based on Exact Elasticity Theory

2015 ◽  
Vol 45 (2) ◽  
pp. 3-20 ◽  
Author(s):  
Masoud Asgari

Abstract A thick hollow cylinder with finite length made of two- dimensional functionally graded material (2D-FGM) is considered and its natural modes are determined, based on great importance of mode shapes information in order to understand vibration behaviour of structures. Three dimensional theory of elasticity implemented for problem formulation, since mode shapes of a thick cylinder are three dimensional even with axisymmetric conditions. The axisymmetric conditions are assumed for the 2D-FGM cylinder. The material properties of the cylinder are varied in the radial and axial directions, with power law functions. Effects of volume fraction distribution on the different types of symmetric mode shapes configuration and vibration behaviour of a simply supported cylinder are analyzed. Three dimensional equations of motion are used and the eigen value problem is developed, based on direct variation method.

2019 ◽  
Vol 134 ◽  
pp. 189-202 ◽  
Author(s):  
C.S. Huang ◽  
H.T. Lee ◽  
P.Y. Li ◽  
K.C. Hu ◽  
C.W. Lan ◽  
...  

2019 ◽  
Vol 31 (1) ◽  
pp. 84-99 ◽  
Author(s):  
Nguyen Van Viet ◽  
Wael Zaki ◽  
Rehan Umer ◽  
Quan Wang

A new model is proposed to describe the response of laminated composite beams consisting of one shape memory alloy layer and one functionally graded material layer. The model accounts for asymmetry in tension and compression of the shape memory alloy behavior and successfully describes the dependence of the position of the neutral surface on phase transformation within the shape memory alloy and on the load direction. Moreover, the model is capable of describing the response of the composite beam to both loading and unloading cases. In particular, the derivation of the equations governing the behavior of the beam during unloading is presented for the first time. The effect of the functionally graded material gradient index and of temperature on the neutral axis deviation and on the overall behavior of the beam is also discussed. The results obtained using the model are shown to fit three-dimensional finite element simulations of the same beam.


Sign in / Sign up

Export Citation Format

Share Document