scholarly journals On the Formation of Spiral Arms in Dwarf Galaxies

2021 ◽  
Vol 65 (12) ◽  
pp. 1215-1232
Author(s):  
A. V. Zasov ◽  
A. V. Khoperskov ◽  
N. A. Zaitseva ◽  
S. S. Khrapov
Keyword(s):  
2011 ◽  
Vol 28 (3) ◽  
pp. 271-279 ◽  
Author(s):  
N. Santiago-Figueroa ◽  
M. E. Putman ◽  
J. Werk ◽  
G. R. Meurer ◽  
E. Ryan-Weber

AbstractWe present VLA 21-cm observations of the spiral galaxy ESO 481-G017 to determine the nature of remote star formation traced by an Hii region found 43 kpc and ∼800 km s−1 from the galaxy center (in projection). ESO 481-G017 is found to have a 120 kpc Hi disk with a mass of 1.2 × 1010M⊙ and UV GALEX images reveal spiral arms extending into the gaseous disk. Two dwarf galaxies with Hi masses close to 108M⊙ are detected at distances of ∼200 kpc from ESO 481-G017 and a Hi cloud with a mass of 6 × 107M⊙ is found near the position and velocity of the remote Hii region. The Hii region is somewhat offset from the Hi cloud spatially and there is no link to ESO 481-G017 or the dwarf galaxies. We consider several scenarios for the origin of the cloud and Hii region and find the most likely is a dwarf galaxy that is undergoing ram pressure stripping. The Hi mass of the cloud and Hi luminosity of the Hii region (1038.1 erg s−1) are consistent with dwarf galaxy properties, and the stripping can trigger the star formation as well as push the gas away from the stars.


2006 ◽  
Vol 2 (S235) ◽  
pp. 118-118
Author(s):  
T. Lisker ◽  
E. K. Grebel ◽  
B. Binggeli

AbstractWe identify disk features (spiral arms, bars, or edge-on disks) in a significant fraction of Virgo cluster early-type dwarfs. These galaxies are disk-shaped and are an unrelaxed cluster population that possibly formed out of infalling progenitors. Some display spiral arms with grand design features that cannot be the mere remainders of potential late-type spiral progenitors.


2015 ◽  
Vol 11 (S317) ◽  
pp. 348-349
Author(s):  
Mira Seo ◽  
H. B. Ann

AbstractWe applied GALFIT and STARLIGHT to the r-band images and spectra, respectively, of ~1,100 dwarf galaxies to analyze the structural properties and stellar populations. In most cases, single component with n = 1 ~ 1.5 well describes the luminosity distribution of dwarf galaxies. However, a large fraction of dS0, dEbc, and dEblue galaxies show sub-structures such as spiral arms and rings. There is a bimodal distributions of stellar ages in dS0 galaxies. But other sub-types of dwarf galaxies show a single peak in the stellar distributions.


1999 ◽  
Vol 118 (6) ◽  
pp. 2723-2733 ◽  
Author(s):  
David I. Méndez ◽  
César Esteban
Keyword(s):  

Author(s):  
Myoungwon Jeon ◽  
Volker Bromm ◽  
Gurtina Besla ◽  
Jinmi Yoon ◽  
Yumi Choi

Abstract CEMP-no stars, a subset of carbon enhanced metal poor (CEMP) stars ($\rm [C/Fe]\ge 0.7$ and $\rm [Fe/H]\lesssim -1$) have been discovered in ultra-faint dwarf (UFD) galaxies, with Mvir ≈ 108 M⊙ and M* ≈ 103 − 104 M⊙ at z = 0, as well as in the halo of the Milky Way (MW). These CEMP-no stars are local fossils that may reflect the properties of the first (Pop III) and second (Pop II) generation of stars. However, cosmological simulations have struggled to reproduce the observed level of carbon enhancement of the known CEMP-no stars. Here we present new cosmological hydrodynamic zoom-in simulations of isolated UFDs that achieve a gas mass resolution of mgas ≈ 60 M⊙. We include enrichment from Pop III faint supernovae (SNe), with ESN = 0.6 × 1051 erg, to understand the origin of CEMP-no stars. We confirm that Pop III and Pop II stars are mainly responsible for the formation of CEMP and C-normal stars respectively. New to this study, we find that a majority of CEMP-no stars in the observed UFDs and the MW halo can be explained by Pop III SNe with normal explosion energy (ESN = 1.2 × 1051 erg) and Pop II enrichment, but faint SNe might also be needed to produce CEMP-no stars with $\rm [C/Fe]\gtrsim 2$, corresponding to the absolute carbon abundance of $\rm A(C)\gtrsim 6.0$. Furthermore, we find that while we create CEMP-no stars with high carbon ratio $\rm [C/Fe]\approx 3-4$, by adopting faint SNe, it is still challenging to reproduce CEMP-no stars with extreme level of carbon abundance of $\rm A(C)\approx 7.0-7.5$, observed both in the MW halo and UFDs.


Sign in / Sign up

Export Citation Format

Share Document