Symbiotic X-ray binaries systems in the galaxy

2015 ◽  
Vol 41 (3-4) ◽  
pp. 114-127 ◽  
Author(s):  
A. G. Kuranov ◽  
K. A. Postnov
Keyword(s):  
X Ray ◽  
1984 ◽  
Vol 108 ◽  
pp. 305-312
Author(s):  
J. B. Hutchings

In the Magellanic Clouds, about 75 candidate stellar X-ray sources have been detected. Most of these positions have now been investigated and optical identifications made for ~ 50%. The majority of sources are foreground dwarf stars or background active galaxies. Detailed investigations exist for 3 SMC sources and 6 LMC sources. It is possible to make a preliminary comparison with the population of galactic X-ray sources. The Magellanic Cloud X-ray binaries have a number of unique or remarkable properties and the most important ones are presented and discussed. These include the most rapid pulsars (SMC X-1, 0538–66), the possible precessing disk in LMC X-4, and the black hole candidates LMC X-3, LMC X-1. The properties of these objects relate to the evolution of stars in the Magellanic Clouds and how it differs from the Galaxy.


2007 ◽  
Vol 469 (2) ◽  
pp. 807-810 ◽  
Author(s):  
Q. Z. Liu ◽  
J. van Paradijs ◽  
E. P. J. van den Heuvel

1999 ◽  
Vol 192 ◽  
pp. 100-103
Author(s):  
A. P. Cowley ◽  
P. C. Schmidtke ◽  
V. A. Taylor ◽  
T.K. McGrath ◽  
J. B. Hutchings ◽  
...  

In this study we compare the global populations of stellar X-ray sources in the LMC, SMC, and the Galaxy. After removing foreground stars and background AGN from the samples, the relative numbers of the various types of X-ray point sources within the LMC and SMC are similar, but differ markedly from those in the Galaxy. The Magellanic Clouds are rich in high-mass X-ray binaries (HMXB), especially those containing rapidly rotating Be stars. However, the LMC and SMC both lack the large number of low-mass X-ray binaries (LMXB) found in the Milky Way, which are known to represent a very old stellar population based on their kinematics, chemical composition, and spatial distribution.


2005 ◽  
Vol 1 (S230) ◽  
pp. 340-344
Author(s):  
A. A. Lutovinov ◽  
M. G. Revnivtsev ◽  
M. R. Gilfanov ◽  
R. A. Sunyaev
Keyword(s):  
X Ray ◽  

2014 ◽  
Vol 10 (S313) ◽  
pp. 361-369
Author(s):  
Gustavo E. Romero

AbstractThe discovery of relativistic jets and superluminal sources associated with accreting X-ray binaries in the Galaxy opened new ways of investigating the physics of outflows from compact objects. The short timescales and relatively large angular sizes of Galactic jets allow to probe the physics of relativistic outflows to unprecedented details. In this article I discuss results of recent modelling of Galactic jets, covering both radiative and dynamical aspects, which can shed light on different features of their extragalactic cousins.


2020 ◽  
Vol 641 ◽  
pp. A149
Author(s):  
D. Rogantini ◽  
E. Costantini ◽  
S. T. Zeegers ◽  
M. Mehdipour ◽  
I. Psaradaki ◽  
...  

Context. The dense Galactic environment is a large reservoir of interstellar dust. Therefore, this region represents a perfect laboratory to study the properties of cosmic dust grains. X-rays are the most direct way to detect the interaction of light with dust present in these dense environments. Aims. The interaction between the radiation and the interstellar matter imprints specific absorption features on the X-ray spectrum. We study them with the aim of defining the chemical composition, the crystallinity, and structure of the dust grains that populate the inner regions of the Galaxy. Methods. We investigated the magnesium and the silicon K-edges detected in the Chandra /HETG spectra of eight bright X-ray binaries, distributed in the neighbourhood of the Galactic centre. We modelled the two spectral features using accurate extinction cross-sections of silicates, which we measured at the synchrotron facility Soleil, France. Results. Near the Galactic centre, magnesium and silicon show abundances similar to the solar ones and they are highly depleted from the gas phase (δMg > 0.90 and δSi > 0.96). We find that amorphous olivine with a composition of MgFeSiO4 is the most representative compound along all lines of sight according to our fits. The contribution of Mg-rich silicates and quartz is low (less than 10%). On average we observe a percentage of crystalline dust equal to 11%. For the extragalactic source LMC X-1, we find a preference for forsterite, a magnesium-rich olivine. Along this line of sight we also observe an under-abundance of silicon ASi∕ALMC = 0.5 ± 0.2.


2014 ◽  
Vol 1 (1) ◽  
pp. 175-180 ◽  
Author(s):  
Janusz Ziolkowski

I will start with the statistics indicating that the objects named in the title of my talk are either non-existing or very elusive to detect (not a single such object is known against 119 known Be/neutron star X-ray binaries). After brief reviewing of the properties of Be/X-ray binaries I discuss several objects that were proposed as the long sought for candidates for Be/black hole X-ray binaries. After three unsuccessful candidates (LS I +61° 303, LS 5039 and MAXI J1836-194), a successful candidate (AGL J2241+4454/MWC 656) was finally, very recently, announced.


2000 ◽  
Vol 177 ◽  
pp. 653-654
Author(s):  
V. D. Pal’shin ◽  
A. I. Tsygan

AbstractIt is shown that X-ray binaries can be accelerated by their own radiation. It is possible if the magnetic field of a neutron star in a binary differs from the dipolar field. Asymmetric X-ray emission generated due to accretion of matter onto a neutron star surface creates an accelerating force. Its magnitude can be comparable or even larger than gravitational attraction of the binary to the Galaxy.


2010 ◽  
Vol 6 (S275) ◽  
pp. 329-330
Author(s):  
Janusz Ziółkowski ◽  
Krzysztof Belczyński

AbstractIn the Galaxy there are 67 Be X-ray binaries known to-date. Out of those, 45 host a neutron star, and for the reminder the nature of a companion is not known. None, so far, is known to host a black hole. This disparity is referred to as a missing Be – black hole X-ray binary problem. The stellar population synthesis calculations following the formation of Be X-ray binaries (Belczyński & Ziółkowski 2009) predict that the ratio of the binaries with neutron stars to the ones with black holes is rather high FNS/BH ~ 30–50. A comparison of this ratio with the number of confirmed Be – neutron star X-ray binaries (45) indicates that the expected number of Be – black hole X-ray binaries is of the order of only ~0–2. This is entirely consistent with the observed Galactic sample. Therefore, there is no problem of the missing Be+BH X-Ray Binaries for the GalaxyIn the Magellanic Clouds there are 94 Be X-ray binaries known to-date. Out of those, 60 host a neutron star. Again, none hosts a black hole. The stellar population synthesis calculations carried out specifically for the Magellanic Clouds (Ziółkowski & Belczyński 2010) predict that the ratio of the Be X-ray binaries with neutron stars to the ones with black holes is only FNS/BH ~ 10. This value is rather too low, as it implies the expected number of Be+BH X-ray binaries of the order of ~6, while none is observed. We found, that to remove the discrepancy, one has to take into account a different history of the star formation rate in the Magellanic Clouds, with the respect to the Galaxy. New stellar population synthesis calculations are currently being carried out.


Sign in / Sign up

Export Citation Format

Share Document