Theory of Magnetic-Field Turbulence in Disk Plasmas and Its Application to the Galaxy and Accretion Model of Compact X-Ray Binaries

1977 ◽  
pp. 262-283
Author(s):  
Setsuo Ichimaru
2000 ◽  
Vol 177 ◽  
pp. 653-654
Author(s):  
V. D. Pal’shin ◽  
A. I. Tsygan

AbstractIt is shown that X-ray binaries can be accelerated by their own radiation. It is possible if the magnetic field of a neutron star in a binary differs from the dipolar field. Asymmetric X-ray emission generated due to accretion of matter onto a neutron star surface creates an accelerating force. Its magnitude can be comparable or even larger than gravitational attraction of the binary to the Galaxy.


2015 ◽  
Vol 41 (3-4) ◽  
pp. 114-127 ◽  
Author(s):  
A. G. Kuranov ◽  
K. A. Postnov
Keyword(s):  
X Ray ◽  

1992 ◽  
Vol 9 ◽  
pp. 211-215
Author(s):  
Y. Tanaka

AbstractBased on the recent Ginga results, following topics on X-ray binaries are briefly discussed: The cyclotron resonnance features observed from several X-ray pulsars, and related problem of the magnetic field decay. Search for millisec. pulsations from LMXRBs. Very bright transients which are suspected to be new black hole candidates, and an estimation of the number of such black hole sources in our galaxy.


1984 ◽  
Vol 108 ◽  
pp. 305-312
Author(s):  
J. B. Hutchings

In the Magellanic Clouds, about 75 candidate stellar X-ray sources have been detected. Most of these positions have now been investigated and optical identifications made for ~ 50%. The majority of sources are foreground dwarf stars or background active galaxies. Detailed investigations exist for 3 SMC sources and 6 LMC sources. It is possible to make a preliminary comparison with the population of galactic X-ray sources. The Magellanic Cloud X-ray binaries have a number of unique or remarkable properties and the most important ones are presented and discussed. These include the most rapid pulsars (SMC X-1, 0538–66), the possible precessing disk in LMC X-4, and the black hole candidates LMC X-3, LMC X-1. The properties of these objects relate to the evolution of stars in the Magellanic Clouds and how it differs from the Galaxy.


2019 ◽  
Vol 492 (1) ◽  
pp. 223-231 ◽  
Author(s):  
Xinwu Cao ◽  
Andrzej A Zdziarski

ABSTRACT The high-mass accreting binary Cyg X-3 is distinctly different from low-mass X-ray binaries (LMXBs) in having powerful radio and γ-ray emitting jets in its soft spectral state. However, the transition from the hard state to the soft one is first associated with quenching of the hard-state radio emission, as in LMXBs. The powerful soft-state jets in Cyg X-3 form, on average, ∼50 d later. We interpret the initial jet quenching as due to the hard-state vertical magnetic field quickly diffusing away in the thin disc extending to the innermost stable circular orbit in the soft state, or, if that field is produced in situ, also cessation of its generation. The subsequent formation of the powerful jets occurs due to advection of the magnetic field from the donor. We find this happens only above certain threshold accretion rate associated with appearance of magnetically driven outflows. The ∼50 d lag is of the order of the viscous time-scale in the outer disc, while the field advection is much faster. This process does not happen in LMXBs due to the magnetic fluxes available from their donors being lower than that for the wind accretion from the Wolf–Rayet donor of Cyg X-3. In our model, the vertical magnetic field in the hard state, required to form the jets both in Cyg X-3 and LMXBs, is formed in situ rather than advected from the donor. Our results provide a unified scenario of the soft and hard states in both Cyg X-3 and LMXBs.


2009 ◽  
Vol 703 (1) ◽  
pp. L63-L66 ◽  
Author(s):  
P. Casella ◽  
A. Pe'er

1996 ◽  
Vol 158 ◽  
pp. 161-164
Author(s):  
G. A. Wynn ◽  
A. R. King

The large-scale accretion flow in the intermediate polars (IPs) is still a matter of vigorous debate. It is known that the magnetic field of the white dwarf (WD) controls the accretion flow close to the surface, channeling the plasma onto the polecaps and giving rise to X-ray emission modulated at the WD spin period (Pspin). After their discovery it was assumed that IPs were the WD analogues of the pulsing X-ray binaries, where a magnetic neutron star accretes from a disrupted accretion disc. However, a number of authors have pointed out that the criteria for disc formation in IPs are less certain than those for the X-ray binaries.The simplest possible criterion for disc formation in a binary is that the accretion flow should be able to orbit freely about the primary star (see Frank, King & Raine 1991 for a review). In non-magnetic systems this is merely the condition that the minimum approach distance of the free stream (Rmin) should exceed the radius of the primary. The situation in magnetic systems is more complex, as the magnetic field of the primary presents an obstacle to the infalling accretion stream. In many treatments of IPs it is assumed that the plasma stream is able to orbit freely about the WD until the ram pressure of the stream is of the same order as the magnetic pressureρv2~B2/8π, whereρis the stream density,vthe stream velocity andBthe local magnetic field strength. This condition fixes the magnetospheric radius,Rmag, inside which the magnetic field is assumed to thread the stream material and direct the accretion flow along the fieldlines.


2007 ◽  
Vol 469 (2) ◽  
pp. 807-810 ◽  
Author(s):  
Q. Z. Liu ◽  
J. van Paradijs ◽  
E. P. J. van den Heuvel

2020 ◽  
Vol 494 (1) ◽  
pp. 44-49 ◽  
Author(s):  
Wynn C G Ho ◽  
M J P Wijngaarden ◽  
Nils Andersson ◽  
Thomas M Tauris ◽  
F Haberl

ABSTRACT The application of standard accretion theory to observations of X-ray binaries provides valuable insights into neutron star (NS) properties, such as their spin period and magnetic field. However, most studies concentrate on relatively old systems, where the NS is in its late propeller, accretor, or nearly spin equilibrium phase. Here, we use an analytic model from standard accretion theory to illustrate the evolution of high-mass X-ray binaries (HMXBs) early in their life. We show that a young NS is unlikely to be an accretor because of the long duration of ejector and propeller phases. We apply the model to the recently discovered ∼4000 yr old HMXB XMMU J051342.6−672412 and find that the system’s NS, with a tentative spin period of 4.4 s, cannot be in the accretor phase and has a magnetic field B > a few × 1013 G, which is comparable to the magnetic field of many older HMXBs and is much higher than the spin equilibrium inferred value of a few × 1011 G. The observed X-ray luminosity could be the result of thermal emission from a young cooling magnetic NS or a small amount of accretion that can occur in the propeller phase.


2018 ◽  
Vol 14 (S346) ◽  
pp. 193-196
Author(s):  
Swetlana Hubrig ◽  
Lara Sidoli ◽  
Konstantin A. Postnov ◽  
Markus Schöller ◽  
Alexander F. Kholtygin ◽  
...  

Abstract. A fraction of high-mass X-ray binaries are supergiant fast X-ray transients. These systems have on average low X-ray luminosities, but display short flares during which their X-ray luminosity rises by a few orders of magnitude. The leading model for the physics governing this X-ray behaviour suggests that the winds of the donor OB supergiants are magnetized. In agreement with this model, the first spectropolarimetric observations of the SFXT IGR J11215-5952 using the FORS 2 instrument at the Very Large Telescope indicate the presence of a kG longitudinal magnetic field. Based on these results, it seems possible that the key difference between supergiant fast X-ray transients and other high-mass X-ray binaries are the properties of the supergiant’s stellar wind and the physics of the wind’s interaction with the neutron star magnetosphere.


Sign in / Sign up

Export Citation Format

Share Document