Study of Features of DDL Schemes Applied in the Method of Discrete Ordinates to Calculate Two-Dimensional Grid Problems with Arbitrary Quadrilaterals

2021 ◽  
Vol 84 (8) ◽  
pp. 1508-1514
Author(s):  
A. A. Nikolaev
Author(s):  
Morteza Rahmanpour ◽  
Reza Ebrahimi ◽  
Mehrzad Shams

A numerical method for calculation of strong radiation for two-dimensional reactive air flow field is developed. The governing equations are taken to be two dimensional, compressible Reynolds-average Navier-Stokes and species transport equations. Also, radiation heat flux in energy equation is evaluated using a model of discrete ordinate method. The model used S4 approximation to reduce the governing system of integro-differential equations to coupled set of partial differential equations. A multiband model is used to construct absorption coefficients. Tangent slab approximation is assumed to determine the characteristic parameters needed in the Discrete Ordinates Method. The turbulent diffusion and heat fluxes are modeled by Baldwin and Lomax method. The flow solution is obtained with a fully implicit time marching method. A thermochemical nonequilibrium formulation appropriate to hypersonic transitional flow of air is presented. The method is compared with existing experimental results and good agreement is observed.


2003 ◽  
Vol 42 (4) ◽  
pp. 343-359 ◽  
Author(s):  
Hong-Mo Koo ◽  
Rodolphe Vaillon ◽  
Vincent Goutière ◽  
Vital Le Dez ◽  
Hojin Cha ◽  
...  

2000 ◽  
Vol 134 (2) ◽  
pp. 121-134 ◽  
Author(s):  
George M. Daskalov ◽  
Randal S. Baker ◽  
Robert C. Little ◽  
David W. O. Rogers ◽  
Jeffrey F. Williamson

Author(s):  
Mauricio A. Sa´nchez ◽  
William H. Sutton ◽  
Carlos A. Sa´nchez

Nonbearing walls made of concrete frequently include one or two-dimensional gaps between sections to allow the concrete exert expansion or contraction due to temperature transients. These section gaps require the use of a thermal fire barrier to stop a fire from spreading during a period of time. In some applications, such as seismic structures, fire barriers are large and form substructures and partial enclosures. These type of fire barriers are often manufactured by layering alternating blankets of ceramic fiber insulation with bounding thin metallic foil sheets. In this case, the barrier must meet the specifications and effectiveness given by the ASTM standard E-119. This effectiveness is determined by the requirement of maintaining structural integrity by allowing some heat release while not permitting the fire flame to pass through. Little data is available on the thermal interaction of 2-D corners and splicing the layers for large barriers. It is expected that spatial and angular effects might either degrade performance or even cause “hot spots” in a barrier wall. Therefore, a numerical simulation of the barrier is accomplished by utilizing the spectral/gray and directional/modeled data of each one of the components and by taking into account two common geometrical building shapes. This simulation analysis is done by coupling of the discrete ordinates method in radiation heat transfer and the energy equation to previously published thermophysical experimental data used as a validation of the properties for fire barrier materials. Some of the effects of directional and surface properties and radiative heat transfer in fire barrier materials have been included in the numerical model. The Fluent®-based numerical model is able to match thermal performance of previous test systems. Initial calculations suggest that a fire barrier consisting of a 2D corner geometry exposed to a fire from either side would be thermally less robust than a slab of the same characteristic aspect ratio. This approximation has shown a preferential orientation for the barrier to be positioned when a fire or other high energy source is postulated.


1992 ◽  
Vol 114 (2) ◽  
pp. 465-472 ◽  
Author(s):  
A. Sa`nchez ◽  
T. F. Smith

The purpose of this study is to develop a model based on the discrete-ordinates method for computing radiant exchange between surfaces separated by a transparent medium and to formulate the model so that arbitrary arrangements of the surfaces can be accommodated. Heat fluxes from the model are compared to those based on the radiosity/irradiation analysis. Three test geometries that include shadowing and irregular geometries are used to validate the model. Heat fluxes from the model are in good agreement with those from the radiosity/irradiation analysis. Effects of geometries, surface emittances, grid patterns, finite-difference weighting factor, and number of discrete angles are reported.


Sign in / Sign up

Export Citation Format

Share Document