nuclear rocket
Recently Published Documents


TOTAL DOCUMENTS

318
(FIVE YEARS 4)

H-INDEX

7
(FIVE YEARS 0)

Author(s):  
Nikolay I. ARKHANGELSKIY ◽  
Evgeny I. MUZYCHENKO ◽  
Aleksey A. SINITSYN

An analysis has been done of performance factors (mission duration, initial mass of the interplanetary crew transfer vehicle, velocity of the re-entry into the Earth atmosphere of the descent vehicle with the crew) for a single-spacecraft manned mission to Mars using high-thrust propulsion systems. Locally optimal solutions (in terms of delta-V budgets for the transfer) were found for the Earth–Mars–Earth transfer, with varying periods of waiting in Mars orbit, minimal distance to the Sun, as well as flight paths (direct Earth–Mars–Earth transfers vs. gravity assist maneuvers at Venus during Earth–Mars or Mars–Earth transfers). The proposed classification for locally optimal solutions is applicable to both high-thrust propulsion systems and low-thrust propulsion systems. A comparison of performance factors has been done for manned Martian mission options based on liquid-propellant engines and nuclear rocket engines with a 12,5 km/s constraint on the velocity of the manned re-entry vehicle in the Earth atmosphere. Key words: Manned mission to Mars, interplanetary transfer trajectory, high-thrust, liquid-propellant rocket engine, nuclear rocket engine, mission duration, initial mass of the interplanetary vehicle, re-entry velocity of a manned vehicle for returning the crew to Earth.


Atomic Energy ◽  
2018 ◽  
Vol 124 (4) ◽  
pp. 244-250
Author(s):  
A. S. Koroteev ◽  
V. N. Akimov ◽  
N. I. Arkhangel’skii ◽  
E. Yu. Kuvshinova ◽  
E. I. Muzychenko

Author(s):  
Xiaokai Sun ◽  
Ping Ye ◽  
Peixue Jiang ◽  
Wei Peng ◽  
Jie Wang

Nuclear rockets with specific impulse have obvious advantages by greatly reducing the mass of the propellant and potentially decreasing the cost of launching material from the earth’s surface. Nuclear thermal rockets use hydrogen propellant with coolant exit temperature of near 3000 K, which is very high, so the cooling of airframe surfaces in the vicinity of the exhaust is needed, of which film cooling is an effective method. Most of previous studies mainly focus on the film cooling effectiveness using two dimensional backward-facing step model, however, the nuclear rocket exhaust using the converging-diverging Laval nozzle, so the film cooling would be different. The present study numerically investigated the influence of coolant Mach number, coolant inlet height on supersonic film cooling in the diverging section of Laval nozzle, while keeping the coolant mass flow rate constant, with the results showing that: increasing the coolant inlet Mach number and the coolant inlet height can increase the film cooling effectiveness; for the same coolant mass flow rate, reducing the coolant inlet height and increasing the inlet Mach number improves film cooling effectiveness.


Sign in / Sign up

Export Citation Format

Share Document