Comparative analysis of operation efficiency of thin-film composite field-electron emitters based on various polymer matrices filled with carbon nanotubes

2011 ◽  
Vol 37 (3) ◽  
pp. 216-219
Author(s):  
O. F. Pozdnyakov ◽  
E. O. Popov ◽  
A. O. Pozdnyakov
RSC Advances ◽  
2015 ◽  
Vol 5 (40) ◽  
pp. 31683-31690 ◽  
Author(s):  
K. C. Wong ◽  
P. S. Goh ◽  
B. C. Ng ◽  
A. F. Ismail

Thin film nanocomposite loaded with milled polymethyl methacrylate grafted multi-walled carbon nanotubes achieved 29%, 47% and 9% increment in CO2 permeance, CO2/N2 and CO2/CH4 selectivity respectively compared to its thin film composite counterpart.


2003 ◽  
Vol 782 ◽  
Author(s):  
Emer Lahiff ◽  
Andrew I. Minett ◽  
Seamus Curran ◽  
Chang Y. Ryu ◽  
Werner J. Blau ◽  
...  

ABSTRACTWe introduce a new method of producing polymer/nanotube composites where the morphology of nanotubes within the composite can be controlled. The thickness of the composite thin film can also be altered as required. Carbon nanotubes are grown from organo-metallic micro-patterns. The morphology of the tubes is determined by the conditions under which the tubes are grown and also, the type of catalyst used. These periodic nanotube arrays are then incorporated into a polymer matrix by spin-coating a curable polymer film on the as-grown tubes. The density and position of conduction channels through the thin film composite can be easily pre-determined by controlling the morphology of the embedded nanotubes. This technique of producing freestanding nanotube/polymer composite films represents a more efficient method of combining these materials for potential flexible electronic applications in an inexpensive and scalable manner.


2020 ◽  
Author(s):  
Ruobin Dai ◽  
Hongyi Han ◽  
Tianlin Wang ◽  
Jiayi Li ◽  
Chuyang Y. Tang ◽  
...  

Commercial polymeric membranes are generally recognized to have low sustainability as membranes need to be replaced and abandoned after reaching the end of their life. At present, only techniques for downcycling end-of-life high-pressure membranes are available. For the first time, this study paves the way for upcycling fouled/end-of-life low-pressure membranes to fabricate new high-pressure membranes for water purification, forming a closed eco-loop of membrane recycling with significantly improved sustainability.


Sign in / Sign up

Export Citation Format

Share Document