Elucidation of experimental-based evaluation of structural parameter of thin film composite membranes for salinity gradient energy

2021 ◽  
Author(s):  
Siti Nur Amirah Idris ◽  
Nora Jullok ◽  
Muhammad Mahyidin Ramli
Membranes ◽  
2018 ◽  
Vol 8 (3) ◽  
pp. 70 ◽  
Author(s):  
Ralph Gonzales ◽  
Myoung Park ◽  
Leonard Tijing ◽  
Dong Han ◽  
Sherub Phuntsho ◽  
...  

Electrospun nanofiber-supported thin film composite membranes are among the most promising membranes for seawater desalination via forward osmosis. In this study, a high-performance electrospun polyvinylidenefluoride (PVDF) nanofiber-supported thin film composite (TFC) membrane was successfully fabricated after molecular layer-by-layer polyelectrolyte deposition. Negatively-charged electrospun polyacrylic acid (PAA) nanofibers were deposited on electrospun PVDF nanofibers to form a support layer consisted of PVDF and PAA nanofibers. This resulted to a more hydrophilic support compared to the plain PVDF nanofiber support. The PVDF-PAA nanofiber support then underwent a layer-by-layer deposition of polyethylenimine (PEI) and PAA to form a polyelectrolyte layer on the nanofiber surface prior to interfacial polymerization, which forms the selective polyamide layer of TFC membranes. The resultant PVDF-LbL TFC membrane exhibited enhanced hydrophilicity and porosity, without sacrificing mechanical strength. As a result, it showed high pure water permeability and low structural parameter values of 4.12 L m−2 h−1 bar−1 and 221 µm, respectively, significantly better compared to commercial FO membrane. Layer-by-layer deposition of polyelectrolyte is therefore a useful and practical modification method for fabrication of high performance nanofiber-supported TFC membrane.


Author(s):  
Ralph Rolly Gonzales ◽  
Myoung Jun Park ◽  
Leonard Tijing ◽  
Dong Suk Han ◽  
Sherub Phuntsho ◽  
...  

Electrospun nanofiber-supported thin film composite membranes are among the most promising membranes for seawater desalination via forward osmosis. In this study, a high-performance electrospun polyvinylidenefluoride (PVDF) nanofiber-supported TFC membrane was successfully fabricated after molecular layer-by-layer polyelectrolyte deposition. Negatively-charged electrospun polyacrylic acid (PAA) nanofibers were deposited on electrospun PVDF nanofibers to form a support layer consisted of PVDF and PAA nanofibers. This resulted to a more hydrophilic support compared to the plain PVDF nanofiber support. The PVDF-PAA nanofiber support then underwent a layer-by-layer deposition of polyethylenimine (PEI) and PAA to form a polyelectrolyte layer on the nanofiber surface prior to interfacial polymerization, which forms the selective polyamide layer of TFC membranes. The resultant PVDF-LbL TFC membrane exhibited enhanced hydrophilicity and porosity, without sacrificing mechanical strength. As a result, it showed high pure water permeability and low structural parameter values of 4.12 Lm−2h−1bar−1 and 221 µm, respectively, significantly better compared to commercial FO membrane. Layer-by-layer deposition of polyelectrolyte is therefore a useful and practical modification method for fabrication of high performance nanofiber-supported TFC membrane.


2021 ◽  
Vol 623 ◽  
pp. 119077
Author(s):  
Rumwald Leo G. Lecaros ◽  
Reincess E. Valbuena ◽  
Lemmuel L. Tayo ◽  
Wei-Song Hung ◽  
Chien-Chieh Hu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document