Choice of optimal radiation energy in X-ray flaw detection

2006 ◽  
Vol 73 (3) ◽  
pp. 449-452
Author(s):  
D. S. Anikonov ◽  
I. V. Prokhorov
2021 ◽  
Vol 87 (4) ◽  
pp. 26-31
Author(s):  
A. N. Fokanov ◽  
V. F. Podurazhnaya ◽  
A. V. Tebyakin

Beryllium products exhibiting a low level of absorption of the radiation energy are widely used in scientific instrumentation design (x-ray technology, radiation detectors, etc.). We present the results of studying the leak tightness of products (disks, plates) made of technical sintered beryllium of standard purity and foil obtained by «warm» rolling from high-purity beryllium. The relevant standards and requirements for testing are given. The leak tightness control was performed using mass spectrometric helium leak detectors with forevacuum backing pumps (oil and dry diaphragm pumps) and specialized vacuum equipment. The parameters of tightness of samples made of technical sintered beryllium were determined. The level of the helium signal during blowing was (0.6 – 7.4) × 10–11 Pa · m3/sec, which corresponds to the tightness standard of foreign analogues and matches the requirements of domestic manufacturers of x-ray equipment. The data spread tended to increase due to the growth of the background value. The obtained results can be used to improve high-tech equipment intended for flaw detection, medical devices, rapid analysis of ore raw materials, radiation safety equipment, etc.


2019 ◽  
Vol 5 (4) ◽  
pp. 361-371 ◽  
Author(s):  
Sajad Keshavarz ◽  
Dariush Sardari

Gold nanoparticles can be used to increase the dose of the tumor due to its high atomic number as well as being free from apparent toxicity. The aim of this study is to evaluate the effect of distribution of gold nanoparticles models, as well as changes in nanoparticle sizes and spectrum of radiation energy along with the effects of nanoparticle penetration into surrounding tissues in dose enhancement factor DEF. Three mathematical models were considered for distribution of gold nanoparticles in the tumor, such as 1-uniform, 2- non-uniform distribution with no penetration margin and 3- non-uniform distribution with penetration margin of 2.7 mm of gold nanoparticles. For this purpose, a cube-shaped water phantom of 50 cm size in each side and a cube with 1 cm side placed at depth of 2 cm below the upper surface of the cubic phantom as the tumor was defined, and then 3 models of nanoparticle distribution were modeled. MCNPX code was used to simulate 3 distribution models. DEF was evaluated for sizes of 20, 25, 30, 50, 70, 90 and 100 nm of gold nanoparticles, and 50, 95, 250 keV and 4 MeV photon energies. In uniform distribution model the maximum DEF was observed at 100 nm and 50 keV being equal to 2.90, in non-uniform distribution with no penetration margin, the maximum DEF was measured at 100 nm and 50 keV being 1.69, and in non-uniform distribution with penetration margin of 2.7 mm, the maximum DEF was measured at 100 nm and 50 keV as 1.38, and the results have been showed that the dose was increased by injecting nanoparticles into the tumor. It is concluded that the highest DEF could be achieved in low energy photons and larger sizes of nanoparticles. Non-uniform distribution of gold nanoparticles can increase the dose and also decrease the DEF in comparison with the uniform distribution. The non-uniform distribution of nanoparticles with penetration margin showed a lower DEF than the non-uniform distribution without any margin and uniform distribution. Meanwhile, utilization of the real X-ray spectrum brought about a smaller DEF in comparison to mono-energetic X-ray photons.


Nanomaterials ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1087
Author(s):  
Bindeshwar Sah ◽  
Jing Wu ◽  
Adam Vanasse ◽  
Nil Kanatha Pandey ◽  
Lalit Chudal ◽  
...  

The Copper-cysteamine (Cu-Cy) nanoparticle is a novel sensitizer with a potential to increase the effectiveness of radiation therapy for cancer treatment. In this work, the effect of nanoparticle size and the energy of X-rays on the effectiveness of radiation therapy are investigated. The effect of the particle size on their performance is very complicated. The nanoparticles with an average size of 300 nm have the most intense photoluminescence, the nanoparticles with the average size of 100 nm have the most reactive oxygen species production upon X-ray irradiation, while the nanoparticles with the average size of 40 nm have the best outcome in the tumor suppression in mice upon X-ray irradiation. For energy, 90 kVp radiation resulted in smaller tumor sizes than 250 kVp or 350 kVp radiation energies. Overall, knowledge of the effect of nanoparticle size and radiation energy on radiation therapy outcomes could be useful for future applications of Cu-Cy nanoparticles.


2021 ◽  
Vol 2064 (1) ◽  
pp. 012092
Author(s):  
A E Ligachev ◽  
M V Zhidkov ◽  
S A Sorokin ◽  
G V Potemkin ◽  
Yu R Kolobov

Abstract Effect of the pulsed soft X-ray fluxes (PSXF) on the surface topography of metals (Mg and Cu) has been investigated. Soft pulse X-ray irradiation (energy quanta of 0.1-1.0 keV) were carried out on a high-current MIG generator. The sample of magnesium was located at a distance of 10 cm from the X-ray source. Since the distance to the sample significantly exceeded the size of the X-ray beam, it can be assumed that the density of the X-ray radiation flow to the magnesium sample was uniform. The duration of the radiation pulse was 100 ns, and the radiation energy density in the pulse varied from 13 to 19 J/cm2. As a result of melting under the action of PSXF of the near-surface layer of metals and subsequent solidification, a wavy relief is formed on their surface. Defects in the form of craters, which usually occur after the impact of a powerful pulsed ion flow on metals, were not detected.


2022 ◽  
Vol 2155 (1) ◽  
pp. 012030
Author(s):  
G.A. Abdullaeva ◽  
G.A. Kulabdullaev ◽  
A.A. Kim ◽  
A.F. Nebesny ◽  
D.O. Yuldashev

Abstract In this study, we evaluate the features of dose enhancement with Gd contrast agent (Magnevist). Due to the increased relaxation time and high atomic number (z=64) Gd can be used in radiation therapy as a radiosensitizer. To perform a quantitative evaluation of the radiosensitization effect is determined a parameter called the dose enhancement factor - DEF. The DEF values were calculated based on the analysis of the mass absorption coefficients for gadolinium and biological tissue. An increase in DEF is observed when the radiation energy is higher than the K-shell ionization energy of Gd atoms. For the presence of 20315 ppm Gd contrast agent in biological tissue the dose enrichment factor is maximum DEF = 4.12 at photon irradiation energy 60 keV. Also, based on calculations for photon irradiation sources considered high degrees of dose enhancement occur for Am-241, Yb-196, and 100 kVp X-ray tube.


2019 ◽  
Vol 62 (2) ◽  
pp. 232-235
Author(s):  
R. R. Akhmetshin ◽  
E. A. Babichev ◽  
D. N. Grigoriev ◽  
V. R. Groshev ◽  
V. F. Kazanin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document