On isothermal coordinates of locally Lipschitz surfaces with singularities

2011 ◽  
Vol 83 (2) ◽  
pp. 185-187
Author(s):  
V. M. Miklyukov
Author(s):  
Giovanni Fusco ◽  
Monica Motta

AbstractIn this paper we consider an impulsive extension of an optimal control problem with unbounded controls, subject to endpoint and state constraints. We show that the existence of an extended-sense minimizer that is a normal extremal for a constrained Maximum Principle ensures that there is no gap between the infima of the original problem and of its extension. Furthermore, we translate such relation into verifiable sufficient conditions for normality in the form of constraint and endpoint qualifications. Links between existence of an infimum gap and normality in impulsive control have previously been explored for problems without state constraints. This paper establishes such links in the presence of state constraints and of an additional ordinary control, for locally Lipschitz continuous data.


2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Fouzia Amir ◽  
Ali Farajzadeh ◽  
Jehad Alzabut

Abstract Multiobjective optimization is the optimization with several conflicting objective functions. However, it is generally tough to find an optimal solution that satisfies all objectives from a mathematical frame of reference. The main objective of this article is to present an improved proximal method involving quasi-distance for constrained multiobjective optimization problems under the locally Lipschitz condition of the cost function. An instigation to study the proximal method with quasi distances is due to its widespread applications of the quasi distances in computer theory. To study the convergence result, Fritz John’s necessary optimality condition for weak Pareto solution is used. The suitable conditions to guarantee that the cluster points of the generated sequences are Pareto–Clarke critical points are provided.


2019 ◽  
Vol 23 (Suppl. 1) ◽  
pp. 1-12 ◽  
Author(s):  
Burhaneddin Izgi ◽  
Coskun Cetin

We develop Milstein-type versions of semi-implicit split-step methods for numerical solutions of non-linear stochastic differential equations with locally Lipschitz coefficients. Under a one-sided linear growth condition on the drift term, we obtain some moment estimates and discuss convergence properties of these numerical methods. We compare the performance of multiple methods, including the backward Milstein, tamed Milstein, and truncated Milstein procedures on non-linear stochastic differential equations including generalized stochastic Ginzburg-Landau equations. In particular, we discuss their empirical rates of convergence.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Xingjie Helen Li ◽  
Fei Lu ◽  
Felix X.-F. Ye

<p style='text-indent:20px;'>Efficient simulation of SDEs is essential in many applications, particularly for ergodic systems that demand efficient simulation of both short-time dynamics and large-time statistics. However, locally Lipschitz SDEs often require special treatments such as implicit schemes with small time-steps to accurately simulate the ergodic measures. We introduce a framework to construct inference-based schemes adaptive to large time-steps (ISALT) from data, achieving a reduction in time by several orders of magnitudes. The key is the statistical learning of an approximation to the infinite-dimensional discrete-time flow map. We explore the use of numerical schemes (such as the Euler-Maruyama, the hybrid RK4, and an implicit scheme) to derive informed basis functions, leading to a parameter inference problem. We introduce a scalable algorithm to estimate the parameters by least squares, and we prove the convergence of the estimators as data size increases.</p><p style='text-indent:20px;'>We test the ISALT on three non-globally Lipschitz SDEs: the 1D double-well potential, a 2D multiscale gradient system, and the 3D stochastic Lorenz equation with a degenerate noise. Numerical results show that ISALT can tolerate time-step magnitudes larger than plain numerical schemes. It reaches optimal accuracy in reproducing the invariant measure when the time-step is medium-large.</p>


2020 ◽  
Vol 25 (6) ◽  
pp. 1059-1078
Author(s):  
Kęstutis Kubilius

Strongly consistent and asymptotically normal estimates of the Hurst index H are obtained for stochastic differential equations (SDEs) that have a unique positive solution. A strongly convergent approximation of the considered SDE solution is constructed using the backward Euler scheme. Moreover, it is proved that the Hurst estimator preserves its properties, if we replace the solution with its approximation.


Sign in / Sign up

Export Citation Format

Share Document