Reusable System for Phenol Detection in an Aqueous Medium Based on Nanodiamonds and Extracellular Oxidase from Basidiomycete Neonothopanus nambi

2021 ◽  
Vol 499 (1) ◽  
pp. 220-224
Author(s):  
N. O. Ronzhin ◽  
O. A. Mogilnaya ◽  
E. D. Posokhina ◽  
V. S. Bondar
2018 ◽  
Vol 18 (8) ◽  
pp. 5448-5453 ◽  
Author(s):  
Nikita Ronzhin ◽  
Alexey Puzyr ◽  
Vladimir Bondar

2005 ◽  
Vol 123 ◽  
pp. 341-344
Author(s):  
A. Khaldoun ◽  
F. González-Caballero ◽  
J. G. López-Durán ◽  
N. Mahrach ◽  
M. L. Kerkeb

2017 ◽  
Vol 39 (1) ◽  
pp. 46-52
Author(s):  
T. SAVCHENKO ◽  
◽  
A. GRECHANOVSKY ◽  
A. BRIK ◽  
N. DUDCHENKO

2019 ◽  
Author(s):  
Chem Int

The removal of Cd(II) and Pb(II) ions from aqueous medium was studied using potato peels biomass. The adsorption process was evaluated using Atomic Absorption Spectrophotometer (AAS). The Vibrational band of the potato peels was studied using Fourier Transform Infrared Spectroscopy (FTIR). The adsorption process was carried out with respect to concentration, time, pH, particle size and the thermodynamic evaluation of the process was carried at temperatures of 30, 40, 50 and 60(0C), respectively. The FTIR studies revealed that the potato peels was composed of –OH, -NH, –C=N, –C=C and –C-O-C functional groups. The optimum removal was obtained at pH 8 and contact time of 20 min. The adsorption process followed Freundlich adsorption and pseudo second-order kinetic models with correlation coefficients (R2) greater than 0.900. The equilibrium adsorption capacity showed that Pb(II) ion was more adsorbed on the surface of the potato peels biomass versus Cd (II) ion (200.91 mg/g > 125.00 mg/g). The thermodynamic studies indicated endothermic, dissociative mechanism and spontaneous adsorption process. This study shows that sweet potato peels is useful as a low-cost adsorbent for the removal of Cd(II) and Pb(II) ions from aqueous medium.


Sign in / Sign up

Export Citation Format

Share Document