biochemical oxygen demand
Recently Published Documents


TOTAL DOCUMENTS

494
(FIVE YEARS 109)

H-INDEX

31
(FIVE YEARS 4)

2022 ◽  
Vol 10 (E) ◽  
pp. 6-11
Author(s):  
Zulfikar Zulfikar ◽  
Nasrullah Nasrullah ◽  
Kartini Kartini ◽  
Wiwit Aditama

BACKGROUND: Domestic wastewater can cause health problems and pollute groundwater sources. Such pollution not only has a negative impact on health and the environment, but also on the cost in providing clean water. AIM: The outcome of domestic wastewater treatment through a proper technique is expected to meet the clean water quality standard for sanitation purposes. MATERIALS AND METHODS: The experiment was conducted to determine the effect of Hydraulic Retention Time (HRT) on the levels of Biochemical Oxygen Demand (BOD) and Total Suspended Solid (TSS) of domestic wastewater. The experiment was carried out with 6 variations of HRT, namely 1 hour, 2 hours, 4 hours, 6 hours and 8 hours with 4 repetitions. The media running process was carried out for 14 days until the reactor condition was in steady state. RESULTS: The results showed that the removal values ​​for COD, Oil and Fat, Ammonia and Total Coliform parameters were 68.03%, 46.51%, 69.64% and 68.99%, respectively. Based on the variation of HRT of 1 hour, 2 hours, 4 hours, 6 hours and 8 hours on the BOD parameter, the removal values ​​obtained were 11.7%, 21.3%, 34.7%, 49.0% and 64.1%, respectively. Furthermore, for the TSS parameter, the values obtained were 17.3%, 25.4%, 30.6%, 42.3% and 50.4%, respectively. CONCLUSION: HRT was proven to have a significant effect on the levels of BOD and TSS of domestic wastewater with a p-value of <0.05 at the 95% confidence level


2021 ◽  
Vol 27 (4) ◽  
pp. 575-588
Author(s):  
Paola Ana Buffon ◽  
Natalia Teixeira Schwab ◽  
Nereu Augusto Streck ◽  
Lilian Osmari Uhlmann ◽  
Elton Ferreira Lima ◽  
...  

Abstract Vernalization, natural or artificial, is a physiological requirement of some plants to meet the need for low temperatures for its complete development to occur. The objective of this article is to describe a protocol of transforming a domestic refrigerator into a BOD (Biochemical Oxygen Demand) prototype aimed at vernalizing propagating materials statice crop. The first step is to install a temperature controller to maintain a constant temperature inside the refrigerator (10 °C). Thinking of seedling vernalization, it is still necessary to install a system of lights inside the refrigerator. The control of the time that the lights remain on inside the prototype is carried out by installing a Timer adjusted so that the lights remained on, uninterruptedly, for 10 hours. To test the effective ness of the prototype, an on-farm experiment was carried out with the statice (Limonium sinuatum L.) crop at 5 locations in Rio Grande do Sul, Brazil. The seedlings were vernalized at an internal temperature of 10 °C and photoperiod of 10 hours for 3 weeks. The duration of this experiment was 8 months and at the end of this observed that statice plants were correctly vernalized because the plants emitted flower stems and showed satisfactory development throughout the growing cycle. Therefore, that the adaptation of a domestic refrigerator as a BOD economically viable and easy mounting prototype is possible. Being an excellent alternative to small producers.


2021 ◽  
Vol 19 (6) ◽  
pp. 984-996
Author(s):  
Laouar Chafia ◽  
Ayadi Abdelhamid ◽  
Hafdallah Abdelhak

The work presented in this paper is concerned with the organic pollution problem and water quality valuation. Biochemical oxygen demand has been used to evaluate the quality of water. If organic matter is present the dissolved oxygen is consumed. This article considers an optimal control problem of coupled system with missing initial conditions, which presents the relation between the biochemical oxygen demand and the dissolved oxygen. The main objective is to control the concentration of dissolved oxygen using the information given in the biochemical oxygen demand equation. The main tool used to characterize the optimal control of the investigate system under the Pareto control formulation.


2021 ◽  
Vol 7 (1) ◽  
pp. 1-6
Author(s):  
Dina Maryani ◽  
Lazuardi Umar

Palm Oil Mill Effluent (POME) merupakan limbah minyak kelapa sawit yang memiliki kadar Chemical Oxygen Demand (COD) dan Biochemical Oxygen Demand (BOD) yang tinggi dan sehingga merusak ekosistem periairan serta menurunkan kadar oksigen terlarut (DO). Namun, POME memiliki nutrisi untuk sel alga dalam memproduksi oksigen. Berdasarkan hal tersebut diperlukan identifikasi POME yang jatuh kebadan air berdasarkan fotosintesis Chlorella sp. menggunakan biosensor. Biosensor telah banyak dikembangkan dalam aplikasi bidang lingkungan dengan melihat kadar oksigen terlarut sebagai kualitas perairan. Penelitian ini menggunakan biosensor dengan prinsip sensor amperometris  tipe Biochip-G. Sensor amperometris mengukur perubahan arus dari reaksi reduksi dan oksidasi dan menghasilkan potensial keluaran yang terukur. Potensial keluaran yang terukur merupakan kadar oksigen terlarut dari penambahan POME terhadap Chlorella sp. ketika proses fotosintesis terjadi. Identifikasi POME berdasarkan proses fotosintesis Chlorella sp. menggunakan cahaya artifisial LED Putih 380 nm-780 nm dengan tingkat variasi konsentrasi POME sebanyak 10%, 20%, dan 30%. Berdasarkan pengukuran kadar oksigen terlarut (DO) menghasilkan nilai DO sebesar 174.15%, 154.66%, dan 138.98% serta nilai sensitivitas sebesar 4mV/%POME.  


2021 ◽  
Vol 894 (1) ◽  
pp. 012032
Author(s):  
A Magfhira ◽  
P Kinasih ◽  
D Salsabila ◽  
E Marchella ◽  
M F Fachrul

Abstract The purpose of writing this scientific paper is to analyze more deeply the management of the quality of the aquatic environment, especially regarding the treatment of domestic wastewater on a household scale. Domestic wastewater treatment with a constructed land system using Air Fern (Azolla pinnata) is expected to reduce concentration parameters such as BOD (Biochemical Oxygen Demand), COD (Chemical Oxygen Demand), and Ammonia. The growth rate of Air Fern (Azolla pinnata) after acclimatization is quite good so that it can reduce BOD (Biochemical Oxygen Demand), COD (Chemical Oxygen Demand) and Ammonia, which are a source of nutrients for plant growth so that it can be used as a promising material for plant growth. It can be used as a promising material for plant growth domestic wastewater treatment. The analysis was carried out using the blended concept, a combination of virtual, online, and laboratory/field activities (offline/outside the network) while still paying attention to health protocols. The priority of this literature study research is to provide input for the government in the form of alternative solutions for managing the quality of the aquatic environment, especially regarding domestic wastewater treatment on a household scale. In addition, this research also supports the international Sustainable Development Goals (SDGs) program: Goal 6: Access to Clean Water and Sanitation” in point 3, namely “Improving water quality by reducing pollution, eliminating waste disposal, and minimizing the disposal of chemicals and hazardous materials, halving the proportion of untreated wastewater and substantially increasing recycling and safe reuse globally”. This research can contribute to appropriate technology in environmental biotechnology, namely wastewater treatment with a system that has simple technology, low cost, energy-saving and is environmentally friendly, which can create a level of hygiene and comfort for the community and maintain environmental sustainability future.


Author(s):  
Huan Lv ◽  
Qian Yang ◽  
Yiliang Chen ◽  
Xiaolong Xu ◽  
Changyu Liu ◽  
...  

2021 ◽  
Vol 23 (3) ◽  
pp. 429-433

<p>The research investigated wastewater discharges from wet coffee processing plant (WCPP) combined with tap water (TW) treated by using Cyperus-ustulatus plant (P1), Typha-latifolia plant (P2) wetland. The WCPP wastewater was conducted by different combination (100%WW + 0% TW; 75% WW + 25% TW; 50% WW + 50% TW; 75%WW + 25% TW and 0% WW + 100% TW) after being irrigated for 21 days in the constructed wetland with P1, P2and control (without a plant). The highest value of total solids, chemical oxygen demand and biochemical oxygen demand increases were 76%, 95% and, 96%, respectively, removed wastewater treated by T3 (50% WW + 50% TW) with P2 wetland after 21 days irrigated. As a result, the combination of coffee wastewater with constructed wetland treatment methods was a low-cost, affordable, technically viable and eco-friendly treatment option for the wet coffee processing plant wastewater.</p>


Sign in / Sign up

Export Citation Format

Share Document