sphere radius
Recently Published Documents


TOTAL DOCUMENTS

100
(FIVE YEARS 27)

H-INDEX

18
(FIVE YEARS 3)

2021 ◽  
Vol 81 (10) ◽  
Author(s):  
G. Lambiase ◽  
L. Mastrototaro

AbstractQuintessence fields, introduced to explain the speed-up of the Universe, might affect the geometry of spacetime surrounding black holes, as compared to the standard Schwarzschild and Kerr geometries. In this framework, we study the neutrino pairs annihilation into electron-positron pairs ($$\nu {\bar{\nu }}\rightarrow e^-e^+$$ ν ν ¯ → e - e + ) near the surface of a neutron star, focusing, in particular, on the Schwarzschild-like geometry in presence of quintessence fields. The effect of the latter is to increase the photon-sphere radius ($$R_{ph}$$ R ph ), increasing in such a way the maximum energy deposition rate near to $$R_{ph}$$ R ph . The rate turns out to be several orders of magnitude greater than the rate computed in the framework of General Relativity. These results might provide a rising in the GRBs energy emitted from a close binary neutron star system and might be used to constraints the parameters of the quintessence model. Finally we theoretically study the effects of rotation on the neutrino energy deposition.


2021 ◽  
Vol 53 (3) ◽  
pp. 839-885
Author(s):  
Sarat Moka ◽  
Sandeep Juneja ◽  
Michel Mandjes

AbstractCoupling-from-the-past (CFTP) methods have been used to generate perfect samples from finite Gibbs hard-sphere models, an important class of spatial point processes consisting of a set of spheres with the centers on a bounded region that are distributed as a homogeneous Poisson point process (PPP) conditioned so that spheres do not overlap with each other. We propose an alternative importance-sampling-based rejection methodology for the perfect sampling of these models. We analyze the asymptotic expected running time complexity of the proposed method when the intensity of the reference PPP increases to infinity while the (expected) sphere radius decreases to zero at varying rates. We further compare the performance of the proposed method analytically and numerically with that of a naive rejection algorithm and of popular dominated CFTP algorithms. Our analysis relies upon identifying large deviations decay rates of the non-overlapping probability of spheres whose centers are distributed as a homogeneous PPP.


NeuroImage ◽  
2021 ◽  
pp. 118183
Author(s):  
Maryam Afzali ◽  
Markus Nilsson ◽  
Marco Palombo ◽  
Derek K Jones

Algorithms ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 72
Author(s):  
Luca Tonti ◽  
Alessandro Patti

Collision between rigid three-dimensional objects is a very common modelling problem in a wide spectrum of scientific disciplines, including Computer Science and Physics. It spans from realistic animation of polyhedral shapes for computer vision to the description of thermodynamic and dynamic properties in simple and complex fluids. For instance, colloidal particles of especially exotic shapes are commonly modelled as hard-core objects, whose collision test is key to correctly determine their phase and aggregation behaviour. In this work, we propose the Oriented Cuboid Sphere Intersection (OCSI) algorithm to detect collisions between prolate or oblate cuboids and spheres. We investigate OCSI’s performance by bench-marking it against a number of algorithms commonly employed in computer graphics and colloidal science: Quick Rejection First (QRI), Quick Rejection Intertwined (QRF) and a vectorized version of the OBB-sphere collision detection algorithm that explicitly uses SIMD Streaming Extension (SSE) intrinsics, here referred to as SSE-intr. We observed that QRI and QRF significantly depend on the specific cuboid anisotropy and sphere radius, while SSE-intr and OCSI maintain their speed independently of the objects’ geometry. While OCSI and SSE-intr, both based on SIMD parallelization, show excellent and very similar performance, the former provides a more accessible coding and user-friendly implementation as it exploits OpenMP directives for automatic vectorization.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Joseph A. Minahan ◽  
Anton Nedelin

Abstract We consider supersymmetric gauge theories on S5 with a negative Yang-Mills coupling in their large N limits. Using localization we compute the partition functions and show that the pure SU(N) gauge theory descends to an SU(N/2)+N/2× SU(N/2)−N/2× SU(2) Chern-Simons gauge theory as the inverse ’t Hooft coupling is taken to negative infinity for N even. The Yang-Mills coupling of the SU(N/2)±N/2 is positive and infinite, while that on the SU(2) goes to zero. We also show that the odd N case has somewhat different behavior. We then study the SU(N/2)N/2 pure Chern-Simons theory. While the eigenvalue density is only found numerically, we show that its width equals 1 in units of the inverse sphere radius, which allows us to find the leading correction to the free energy when turning on the Yang-Mills term. We then consider USp(2N) theories with an antisymmetric hypermultiplet and Nf< 8 fundamental hypermultiplets and carry out a similar analysis. Along the way we show that the one-instanton contribution to the partition function remains exponentially suppressed at negative coupling for the SU(N) theories in the large N limit.


Author(s):  
Boubaker Dhibi ◽  
Brahim Ben-Beya

In this study, three-dimensional computational analysis is performed to investigate the magnetoconvection of ferrofluid ([Formula: see text]-water) within a cubical enclosure heated by an inner spherical hot block. The ferrofluid, considered as a working fluid, is modeled as a single-phase fluid. The inner spherical block is put at high temperature while all the remaining walls of the enclosure are exposed to low temperature. Two radii values ([Formula: see text] and [Formula: see text]) of the inner hot sphere are examined. Governing equations with corresponding boundary conditions are solved numerically applying a second-order accurate finite volume method on a staggered grid system, using an accelerated multigrid model. Simulations are carried out based on various flow-governing parameters such as Rayleigh number [Formula: see text], Hartmann number [Formula: see text] and ferrofluid nanoparticle volume fraction [Formula: see text]. The effects of the pertinent parameters in the performance of the system are also studied. The flow and thermal fields, the local and surface-averaged Nusselt numbers on the sphere and the enclosure for both configurations are detailed. The flow remains steady and laminar for all Rayleigh numbers regardless of the sphere radius. Obviously, heat transfer rate improves with [Formula: see text] augmentation and minimizes with Ha decrease. At the highest Ra and lowest Ha, higher inner sphere radius shows significantly better heat transfer rate (more than [Formula: see text]). Useful correlations are presented to quantify the surface-averaged heat transfer rate through the cubical enclosure.


2021 ◽  
Vol 17 (3) ◽  
pp. 289-306
Author(s):  
K. Lamzoud ◽  
◽  
R. Assoudi ◽  
F. Bouisfi ◽  
M. Chaoui ◽  
...  

We present here an analytical calculation of the hydrodynamic interactions between a smooth spherical particle held fixed in a Poiseuille flow and a rough wall. By the assumption of a low Reynolds number, the flow around a fixed spherical particle is described by the Stokes equations. The surface of the rigid wall has periodic corrugations, with small amplitude compared with the sphere radius. The asymptotic development coupled with the Lorentz reciprocal theorem are used to find the analytical solution of the couple, lift and drag forces exerted on the particle, generated by the second-order flow due to the wall roughness. These hydrodynamic effects are evaluated in terms of amplitude and period of roughness and also in terms of the distance between sphere and wall.


2020 ◽  
Vol 12 (4) ◽  
pp. 429-436
Author(s):  
Valery A. Golunov ◽  
◽  
Vadim A. Korotkov ◽  

A method for calculating holograms for volumetric objects based on the representation of objects in the form of ensembles of virtual point sources distributed on a set of parallel planes has been proposed. The proposed method is the development of the well-known method in which objects are represented as ensemble of real point scatterers. The possibilities of the proposed method are demonstrated by calculating a hologram of a fragment of a sphere, on which 1000 points are randomly selected, at which radiation emanating from the center of the sphere is scattered. The choice of a fragment of a sphere as an object under study is due to the fact that when calculating its hologram, phase errors inherent in approximate calculations are most pronounced. The calculations were performed for the frequency range of 2...100 GHz, the sphere radius of 0.5 m, a two-dimensional hologram size of 0.65×0.65 m, and a pixel count of 512×512. It is shown that, in comparison with the known method, the proposed method makes it possible to calculate the amplitude of a hologram with satisfactory accuracy if virtual sources are placed on parallel planes in an amount of more than 64 pieces. In the case of objects that require representation in the form of an ensemble of point scatterers in the amount of more than 1000 pieces, the calculation of their holograms by the proposed method turns out to be much more efficient than the known method.


Author(s):  
Sergey Ershov ◽  
Alexey Voloboy ◽  
Dmitriy Zhdanov ◽  
Andrey Zhdanov

A widely used method for noise reduction in Monte-Carlo ray tracing is combing different means of sampling, known as multiple importance sampling (MIS). For bi-directional Monte-Carlo ray tracing with photon maps (BDPM), the join paths are obtained by merging camera and light sub-paths, and since several light paths are checked again the same camera path, and vice versa, the join paths obtained are not statistically independent. Thus the noise in this method obeys laws different from those in simple classic Monte-Carlo with independent samples so the weights that minimize that noise must also be calculated differently. This paper drives that weights for the simplest case when we mix contribution from only two vertices of camera ray. It shows that the weights obey an integral equation which is qualitatively different from the well-known MIS formulae for uncorrelated samples. Besides that, even if forget the integral operator, the weights depend on the integration sphere radius and the number of light rays used. The integral equation is solved analytically in a closed form and it is demonstrated how to perform the necessary calculations in BDPM.


Sign in / Sign up

Export Citation Format

Share Document