Combustion of Round Hydrogen Microjet in Concurrent Flow

2021 ◽  
Vol 30 (2) ◽  
pp. 213-224
Author(s):  
V. V. Kozlov ◽  
M. V. Litvinenko ◽  
Yu. A. Litvinenko ◽  
A. M. Pavlenko ◽  
A. S. Tambovtsev ◽  
...  
Keyword(s):  
Networks ◽  
2014 ◽  
Vol 65 (1) ◽  
pp. 56-67 ◽  
Author(s):  
Pierre-Olivier Bauguion ◽  
Walid Ben-Ameur ◽  
Eric Gourdin

2020 ◽  
Vol 142 (11) ◽  
Author(s):  
Yanjun Li ◽  
Ya-Ting T. Liao ◽  
Paul Ferkul

Abstract The objective of this work is to investigate the aerodynamics and thermal interactions between a spreading flame and the surrounding walls as well as their effects on fire behaviors. A three-dimensional transient computational fluid dynamics (CFD) combustion model is used to simulate concurrent-flow flame spread over a thin solid sample in a narrow flow duct. The height of the flow duct is the main parameter. The numerical results predict a quenching height for the flow duct below which the flame fails to spread. For duct heights sufficiently larger than the quenching height, the flame reaches a steady spreading state before the sample is fully consumed. The flame spread rate and the pyrolysis length at steady-state first increase and then decrease when the flow duct height decreases. The detailed gas and solid profiles show that flow confinement has multiple effects on the flame spread process. On one hand, it accelerates flow during thermal expansion from combustion, intensifying the flame. On the other hand, increasing flow confinement reduces the oxygen supply to the flame and increases conductive heat loss to the walls, both of which weaken the flame. These competing effects result in the aforementioned nonmonotonic trend of flame spread rate as duct height varies. Near the quenching duct height, the transient model reveals that the flame exhibits oscillation in length, flame temperature, and flame structure. This phenomenon is suspected to be due to thermodiffusive instability.


Author(s):  
Yanjun Li ◽  
Ya-Ting T. Liao ◽  
Paul Ferkul

Abstract A numerical study is pursued to investigate the aerodynamics and thermal interactions between a spreading flame and the surrounding walls as well as their effects on fire behaviors. This is done in support of upcoming microgravity experiments aboard the International Space Station. For the numerical study, a three-dimensional transient Computational Fluid Dynamics combustion model is used to simulate concurrent-flow flame spread over a thin solid sample in a narrow flow duct. The height of the flow duct is the main parameter. The numerical results predict a quenching height for the flow duct below which the flame fails to spread. For duct heights sufficiently larger than the quenching height, the flame reaches a steady spreading state before the sample is fully consumed. The flame spread rate and the pyrolysis length at steady state first increase and then decrease when the flow duct height decreases. The detailed gas and solid profiles show that flow confinement has competing effects on the flame spread process. On one hand, it accelerates flow during thermal expansion from combustion, intensifying the flame. On the other hand, increasing flow confinement reduces the oxygen supply to the flame and increases conductive heat loss to the walls, both of which weaken the flame. These competing effects result in the aforementioned non-monotonic trend of flame spread rate as duct height varies. This work relates to upcoming microgravity experiments, in which flat thin samples will be burned in a low-speed concurrent flow using a small flow duct aboard the International Space Station. Two baffles will be installed parallel to the fuel sample (one on each side of the sample) to create an effective reduction in the height of the flow duct. The concept and setup of the experiments are presented in this work.


2010 ◽  
Vol 132 (9) ◽  
Author(s):  
Ya-Ting Tseng ◽  
James S. T’ien

A detailed two-dimensional transient model has been formulated and numerically solved for concurrent flames over thick and thin solids in low-speed forced flows. The processes of flame growth leading to steady states are numerically simulated. For a thick solid, the steady state is a nongrowing stationary flame with a limiting length. For a thin solid, the steady state is a spreading flame with a constant spread rate and a constant flame length. The reason for a nongrowing limiting flame for the thick solid is the balance between the flame heat feedback and the surface radiative heat loss at the pyrolysis front, as first suggested by Honda and Ronney. The reason for achieving a steady spread for thin solids is the balance between the solid burnout rate and the flame tip advancing rate. Detailed transient flame and thermal profiles are presented to illustrate the different flame growth features between the thick- and thin-solid fuel samples.


1990 ◽  
Vol 37 (2) ◽  
pp. 318-334 ◽  
Author(s):  
Farhad Shahrokhi ◽  
D. W. Matula

AIChE Journal ◽  
1973 ◽  
Vol 19 (6) ◽  
pp. 1223-1226 ◽  
Author(s):  
Raymond C. Ufford ◽  
Joseph J. Perona

Sign in / Sign up

Export Citation Format

Share Document