Normal Fluctuations of Biological Membrane Shape as a Coupling Factor for Ordered Monolayer Domains

Author(s):  
T. R. Galimzyanov ◽  
M. A. Kalutsky ◽  
O. V. Kondrashov ◽  
K. V. Pinigin ◽  
R. J. Molotkovsky ◽  
...  
2020 ◽  
Author(s):  
Eleonora Diamanti ◽  
Inda Setyawati ◽  
Spyridon Bousis ◽  
leticia mojas ◽  
lotteke Swier ◽  
...  

Here, we report on the virtual screening, design, synthesis and structure–activity relationships (SARs) of the first class of selective, antibacterial agents against the energy-coupling factor (ECF) transporters. The ECF transporters are a family of transmembrane proteins involved in the uptake of vitamins in a wide range of bacteria. Inhibition of the activity of these proteins could reduce the viability of pathogens that depend on vitamin uptake. Because of their central role in the metabolism of bacteria and their absence in humans, ECF transporters are novel potential antimicrobial targets to tackle infection. The hit compound’s metabolic and plasma stability, the potency (20, MIC Streptococcus pneumoniae = 2 µg/mL), the absence of cytotoxicity and a lack of resistance development under the conditions tested here suggest that this scaffold may represent a promising starting point for the development of novel antimicrobial agents with an unprecedented mechanism of action.<br>


2020 ◽  
Author(s):  
Junaid Khan

While self mixing interferometry(SMI) has proven to be suitable for displacement measurement and other sensing applications,its characteristic self mixing signal shape is strongly governed by the non-linear phase equation which forms relation between perturbed and unperturbed phase of self mixing laser.Therefore, while it is desirable for robust estimation of displacement of moving target, the algorithms to achieve this must have an objective strategy which can be achieved by understanding the characteristic of extracting knowledge of perturbed phase from unperturbed phase. Therefore, it has been proved and shown that such strategy must not involve sole methods where perturbed phase is continuous function of unperturbed phase (e.g:Taylor series or fixed point methods) or through successive displacements (e.g: variations of Gauss Seidal method). Subset of this strategy is to perform spectral filtering of perturbed phase followed by perturbative or homotopic deformation. A less computationally expensive approach of this strategy is adopted to achieve displacement with mean error of 62.2nm covering all feedback regimes, when coupling factor 'C' is unknown.<br>


2020 ◽  
Vol 20 (3) ◽  
pp. 195-206 ◽  
Author(s):  
Shriya Agarwal ◽  
Vinayak Agarwal ◽  
Mugdha Agarwal ◽  
Manisha Singh

Abstract: In recent times, several approaches for targeted gene therapy (GT) had been studied. However, the emergence of extracellular vesicles (EVs) as a shuttle carrying genetic information between cells has gained a lot of interest in scientific communities. Owing to their higher capabilities in dealing with short sequences of nucleic acid (mRNA, miRNA), proteins, recombinant proteins, exosomes, the most popular form of EVs are viewed as reliable biological therapeutic conveyers. They have natural access through every biological membrane and can be employed for site-specific and efficient drug delivery without eliciting any immune responses hence, qualifying as an ideal delivery vehicle. Also, there are many research studies conducted in the last few decades on using exosome-mediated gene therapy into developing an effective therapy with the concept of a higher degree of precision in gene isolation, purification and delivery mechanism loading, delivery and targeting protocols. This review discusses several facets that contribute towards developing an efficient therapeutic regime for gene therapy, highlighting limitations and drawbacks associated with current GT and suggested therapeutic regimes.


Sign in / Sign up

Export Citation Format

Share Document