On strategy for determining displacement solely from perturbed phase of self mixing interferometry

Author(s):  
Junaid Khan

While self mixing interferometry(SMI) has proven to be suitable for displacement measurement and other sensing applications,its characteristic self mixing signal shape is strongly governed by the non-linear phase equation which forms relation between perturbed and unperturbed phase of self mixing laser.Therefore, while it is desirable for robust estimation of displacement of moving target, the algorithms to achieve this must have an objective strategy which can be achieved by understanding the characteristic of extracting knowledge of perturbed phase from unperturbed phase. Therefore, it has been proved and shown that such strategy must not involve sole methods where perturbed phase is continuous function of unperturbed phase (e.g:Taylor series or fixed point methods) or through successive displacements (e.g: variations of Gauss Seidal method). Subset of this strategy is to perform spectral filtering of perturbed phase followed by perturbative or homotopic deformation. A less computationally expensive approach of this strategy is adopted to achieve displacement with mean error of 62.2nm covering all feedback regimes, when coupling factor 'C' is unknown.<br>

2020 ◽  
Author(s):  
Junaid Khan

While self mixing interferometry(SMI) has proven to be suitable for displacement measurement and other sensing applications,its characteristic self mixing signal shape is strongly governed by the non-linear phase equation which forms relation between perturbed and unperturbed phase of self mixing laser.Therefore, while it is desirable for robust estimation of displacement of moving target, the algorithms to achieve this must have an objective strategy which can be achieved by understanding the characteristic of extracting knowledge of perturbed phase from unperturbed phase. Therefore, it has been proved and shown that such strategy must not involve sole methods where perturbed phase is continuous function of unperturbed phase (e.g:Taylor series or fixed point methods) or through successive displacements (e.g: variations of Gauss Seidal method). Subset of this strategy is to perform spectral filtering of perturbed phase followed by perturbative or homotopic deformation. A less computationally expensive approach of this strategy is adopted to achieve displacement with mean error of 62.2nm covering all feedback regimes, when coupling factor 'C' is unknown.<br>


2020 ◽  
Author(s):  
Junaid Khan

While self-mixing interferometry(SMI) has proven to be suitable for displacement measurement and other sensing applications, its characteristic self-mixing signal shape is strongly governed by the non-linear phase equation which forms relation between perturbed and unperturbed phase of self-mixing laser. Therefore, while it is desirable for robust estimation of displacement of moving target, the algorithms to achieve this must have an objective strategy that can be achieved by understanding the characteristic of extracting knowledge of the perturbed phase from the unperturbed phase. Therefore, it has been proved and shown that such a strategy must not involve sole methods where the perturbed phase is a continuous function of the unperturbed phase (e.g: Taylor series or fixed-point methods) or through successive displacements (e.g: variations of Gauss-Seidel method). The subset of this strategy is to perform spectral filtering of the perturbed phase followed by perturbative or homotopic deformation. A less computationally expensive approach of this strategy is adopted to achieve displacement with a mean error of 62.2nm covering all feedback regimes, when the coupling factor 'C' is unknown.


2020 ◽  
Author(s):  
Junaid Khan

While self-mixing interferometry(SMI) has proven to be suitable for displacement measurement and other sensing applications, its characteristic self-mixing signal shape is strongly governed by the non-linear phase equation which forms relation between perturbed and unperturbed phase of self-mixing laser. Therefore, while it is desirable for robust estimation of displacement of moving target, the algorithms to achieve this must have an objective strategy that can be achieved by understanding the characteristic of extracting knowledge of the perturbed phase from the unperturbed phase. Therefore, it has been proved and shown that such a strategy must not involve sole methods where the perturbed phase is a continuous function of the unperturbed phase (e.g: Taylor series or fixed-point methods) or through successive displacements (e.g: variations of Gauss-Seidel method). The subset of this strategy is to perform spectral filtering of the perturbed phase followed by perturbative or homotopic deformation. A less computationally expensive approach of this strategy is adopted to achieve displacement with a mean error of 62.2nm covering all feedback regimes, when the coupling factor 'C' is unknown.


2020 ◽  
Author(s):  
Junaid Khan

Abstract While self mixing interferometry(SMI) has proven to be suitable for displacement measurement and other sensing applications,its characteristic self mixing signal shape is strongly governed by the non-linear phase equation which forms relation between perturbed and unperturbed phase of self mixing laser.Therefore, while it is desirable for robust estimation of displacement of moving target, the algorithms to achieve this must have an objective direction which can be achieved by understanding the characteristic of extracting knowledge of perturbed phase from unperturbed phase. Therefore, this paper tends to deduce results from the self mixing interferometry(SMI) phase equation,by showing the impossibility of analytically deriving perturbed phase as continuous function of unperturbed phase either through finite or infinite substitutions. Therefore we never get exact displacement just by sole knowledge of perturbed phase. Moreover, it has theoretically shown that the action of practically deriving unperturbed phase from perturbed phase becomes a filltering process in spectral domain followed by perturbative or homotopical deformation.


2019 ◽  
Vol 18 (7) ◽  
pp. 1532-1536 ◽  
Author(s):  
Sungpeel Kim ◽  
Dong Kyoo Kim ◽  
Youjin Kim ◽  
Jaehoon Choi ◽  
Kyung-Young Jung

2021 ◽  
pp. 1-1
Author(s):  
Yingxiang Sun ◽  
Haoqiu Xiong ◽  
Danny Kai Pin Tan ◽  
Tony Xiao Han ◽  
Rui Du ◽  
...  

2018 ◽  
Vol 10 (12) ◽  
pp. 1966 ◽  
Author(s):  
Zhanye Chen ◽  
Yu Zhou ◽  
Linrang Zhang ◽  
Chunhui Lin ◽  
Yan Huang ◽  
...  

Near space is the key to integrating “sky” and “space” into the future. A synthetic aperture radar (SAR) that works in this area would initiate a technological revolution for remote sensing applications. This study mainly focused on ground moving target imaging (GMTIm) for a near-space hypersonic vehicle-borne SAR (NS-HSV-SAR) with squint angle. The range history, parameter coupling, and Doppler ambiguity of the squint-looking NS-HSV-SAR are more complicated than traditional side-looking airborne or space-borne SARs. Thus, a precise range model is presented on the basis of phase error analyses. Then, all potential distributions of echo’s azimuth spectrum are derived, and a GMTIm method is proposed on the basis of a detailed analysis of the echo characteristics. The proposed method consists of three steps. Firstly, a prior information-based pre-processing function was created to decrease the Doppler ambiguity and range migration effects. Secondly, a blur matched keystone transform was developed to correct the residual range walk migration. Thirdly, a time-saving chirp Fourier transform was investigated for azimuth focusing. Implementation considerations, including the curvilinear trajectory of the NS-HSV-SAR, multiple moving target imaging, and applicability and limitation of the method, are discussed. Finally, simulation results are presented to validate the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document