Disturbances of the upper atmosphere and ionosphere caused by acoustic-gravity wave sources in the lower atmosphere

2016 ◽  
Vol 10 (1) ◽  
pp. 127-132 ◽  
Author(s):  
I. V. Karpov ◽  
S. P. Kshevetsky ◽  
O. P. Borchevkina ◽  
A. V. Radievsky ◽  
A. I. Karpov
2012 ◽  
Vol 18 (4(77)) ◽  
pp. 30-36 ◽  
Author(s):  
Y.I. Kryuchkov ◽  
◽  
O.K. Cheremnykh ◽  
A.K. Fedorenko ◽  
◽  
...  

Author(s):  
Friederike Lilienthal ◽  
Erdal Yiğit ◽  
Nadja Samtleben ◽  
Christoph Jacobi

Implementing a nonlinear gravity wave (GW) parameterization into a mechanistic middle and upper atmosphere model, which extends to the lower thermosphere (160 km), we study the response of the atmosphere in terms of the circulation patterns, temperature distribution, and migrating terdiurnal solar tide activity to the upward propagating small-scale internal GWs originating in the lower atmosphere. We perform three test simulations for the Northern Hemisphere winter conditions in order to assess the effects of variations in the initial GW spectrum on the climatology and tidal patterns of the mesosphere and lower thermosphere. We find that the overall strength of the source level momentum flux has a relatively small impact on the zonal mean climatology. The tails of the GW source level spectrum, however, are crucial for the lower thermosphere climatology. With respect to the terdiurnal tide, we find a strong dependence of tidal amplitude on the induced GW drag, generally being larger when GW drag is increased.


2021 ◽  
Author(s):  
James O'Donoghue ◽  
Luke Moore ◽  
Tanapat Bhakyapaibul ◽  
Henrik Melin ◽  
Tom Stallard ◽  
...  

<p>Jupiter's upper atmosphere is significantly hotter than expected based on the amount of solar heating it receives. This temperature discrepency is known as the 'energy crisis' due to it's nearly 50-year duration and the fact it also occurs at Saturn, Uranus and Neptune. At Jupiter, magnetosphere-ionosphere coupling gives rise to intense auroral emissions and enormous energy deposition in the magnetic polar regions, so it was presumed long ago that redistribution of this energy could heat the rest of the planet. However, most global circulation models have difficulty redistributing auroral energy globally due to the strong Coriolis forces and ion drag on this rapidly rotating planet. Consequently, other possible heat sources have continued to be studied, such as heating by gravity and acoustic waves emanating from the lower atmosphere. Each global heating mechanism would imprint a unique signature on global temperature gradients, thus revealing the dominant heat source, but these gradients have not been determined due a lack of planet-wide, high-resolution data. The last global map of Jovian upper-atmospheric temperatures was produced using ground-based data taken in 1993, in which the region between 45<sup>o</sup> latitude (north & south) and the poles was represented by just 2 pixels. As a result, those maps did not (or could not) show a clear temperature gradient, and furthermore, they even showed regions of hot atmosphere near the equator, supporting the idea of an equatorial heat source, e.g. gravity and/or acoustic wave heating. Therefore observationally and from a modeling perspective, a concensus has not been reached to date. Here we report new infrared spectroscopy of Jupiter's major upper-atmospheric ion H<sub>3</sub><sup>+</sup>, with a spatial resolution of 2<sup>o</sup> longitude and latitude extending from pole to equator, capable of tracing the global temperature gradients. We find that temperatures decrease steadily from the auroral polar regions to the equator. Further, during a period of enhanced activity possibly driven by a solar wind compression, a high-temperature planetary-scale structure was observed which may be propagating from the aurora. These observations indicate that Jupiter's upper atmosphere is predominantly heated via the redistribution of auroral energy, and therefore that Coriolis forces and ion drag are observably overcome.</p>


1974 ◽  
Vol 55 (S1) ◽  
pp. S75-S75
Author(s):  
Wayne A. Kinney ◽  
Christopher Y. Kapper ◽  
Allan D. Pierce

2006 ◽  
Vol 24 (4) ◽  
pp. 1175-1188 ◽  
Author(s):  
E. Becker ◽  
D. C. Fritts

Abstract. We present new sensitivity experiments that link observed anomalies of the mesosphere and lower thermosphere at high latitudes during the MaCWAVE/MIDAS summer program 2002 to enhanced planetary Rossby-wave activity in the austral winter troposphere. We employ the same general concept of a GCM having simplified representations of radiative and latent heating as in a previous study by Becker et al. (2004). In the present version, however, the model includes no gravity wave (GW) parameterization. Instead we employ a high vertical and a moderate horizontal resolution in order to describe GW effects explicitly. This is supported by advanced, nonlinear momentum diffusion schemes that allow for a self-consistent generation of inertia and mid-frequency GWs in the lower atmosphere, their vertical propagation into the mesosphere and lower thermosphere, and their subsequent dissipation which is induced by prescribed horizontal and vertical mixing lengths as functions of height. The main anomalies in northern summer 2002 consist of higher temperatures than usual above 82 km, an anomalous eastward mean zonal wind between 70 and 90 km, an altered meridional flow, enhanced turbulent dissipation below 80 km, and enhanced temperature variations associated with GWs. These signals are all reasonably described by differences between two long-integration perpetual model runs, one with normal July conditions, and another run with modified latent heating in the tropics and Southern Hemisphere to mimic conditions that correspond to the unusual austral winter 2002. The model response to the enhanced winter hemisphere Rossby-wave activity has resulted in both an interhemispheric coupling through a downward shift of the GW-driven branch of the residual circulation and an increased GW activity at high summer latitudes. Thus a quantitative explanation of the dynamical state of the northern mesosphere and lower thermosphere during June-August 2002 requires an enhanced Lorenz energy cycle and correspondingly enhanced GW sources in the troposphere, which in the model show up in both hemispheres.


Sign in / Sign up

Export Citation Format

Share Document