Gradient Structures of Ni–Zn Ferrites for Electromagnetic Radiation Protection Devices

2021 ◽  
Vol 12 (5) ◽  
pp. 1185-1190
Author(s):  
V. V. Karanskij ◽  
S. V. Smirnov ◽  
A. S. Klimov ◽  
E. V. Savruk
2021 ◽  
Vol 5 ◽  
pp. 39-46
Author(s):  
V. V. Karanskij ◽  
◽  
S. V. Smirnov ◽  
A. S. Klimov ◽  
E. V. Savruk ◽  
...  

Increasing the reliability requirements for electromagnetic compatibility of electronic equipment requires the creation of protective coatings that absorb electromagnetic radiation or the development of new radio-absorbing materials. In the frequency range up to 1 GHz, radio-absorbing materials based on Ni – Zn ferrites are of the greatest interest. The absorption of electromagnetic radiation by ferrites occurs due to resonant phenomena at the level of domains and atoms. Improving the performance of ferrites is possible by modifying their surface properties. In this paper, gradient structures for electromagnetic radiation protection products are obtained by treating the surface of Ni – Zn ferrite samples with a low-energy electron beam. To generate the electron beam, a unique development was used — a forevacuum plasma electronic source that allows forming and transporting a beam with a power density of up to 105 W/cm2 under conditions of high pressure and high gas release. As a result of processing, gradient structures were found on the surface of ferrites. A theoretical analysis and experimental study of the obtained structures “non – magnetic conductor – ferrite”, characterized by an increased attenuation coefficient and a reduced reflection coefficient of electromagnetic radiation in the frequency range from 0.5 to 2.5 GHz. The possibility of obtaining near-surface layers depleted in zinc with increased electrical conductivity and reduced magnetic permeability is shown.


2020 ◽  
Vol 90 (21-22) ◽  
pp. 2504-2521
Author(s):  
Veronika Tunakova ◽  
Maros Tunak ◽  
Pavla Tesinova ◽  
Marie Seidlova ◽  
Jiri Prochazka

At present, much attention is focused on developing clothing fabrics with advanced functionality without compromising their visual, mechanical, or comfort properties. A fabric’s ability to prevent the penetration of electromagnetic radiation is an interesting added feature. In the published literature, there are many references describing the development and investigation of electromagnetic shielding textile structures using different electrically conductive additives. However, little attention has been given to the aesthetic and comfort properties of these special fabrics. Moreover, the availability of everyday fashion containing electromagnetic radiation protection is very limited. For this study, woven fabric made from a mixture of traditional fibers and extremely thin discrete stainless steel fibers developed in the authors’ previous research was used as a substrate. The fabric was digitally printed to provide an interesting design effect suitable for use in clothing and for making clothes for everyday wear. The main objective of this work is to determine whether digital printing is a suitable tool for changing the color and pattern of this metal fiber-containing fabric. The individual goals are (a) to examine the fabric’s color fastness to washing and (b) to investigate whether the surface modification of the fabric adversely affects its functionality. Results show that it is possible to change the color and pattern of metal fiber-containing fabric by digital printing easily, whereas the associated decrease of porosity causes an increase of this special fabric functionality. The electromagnetic shielding effectiveness of the fabric after printing is around 33 dB for frequency 1.5 GHz. However, washing has a negative effect, causing both the electromagnetic shielding ability decrease (to 27 dB for frequency 1.5 GHz after 20 washing and drying cycles) and color fading (the color fastness grade is around 1–2 after 20 washing and drying cycles). Furthermore, the basic transport properties of printed electrically conductive fabric are compared with those of fabric made from traditional material and positive results are found. The incidence of pilling after washing is also evaluated, whereas the first pills are observed after the eighth washing and drying cycle. Finally, clothing prototypes that could be prepared from printed fabric are presented.


2009 ◽  
Vol 44 (7-8) ◽  
pp. 673-691 ◽  
Author(s):  
M. Silari ◽  
S. Agosteo ◽  
P. Beck ◽  
R. Bedogni ◽  
E. Cale ◽  
...  

2014 ◽  
Vol 1035 ◽  
pp. 520-523 ◽  
Author(s):  
Ye Sun ◽  
Yue Fang Zhang ◽  
Wan Jun Hao

To solve more and more serious electromagnetic radiations, electromagnetic wave absorption cement were prepared by introducing carbon black and glass fiber as composited absorbing reagent, wich can be useful in building anechoic chamber and other electromagnetic radiation protection to buildings. The results showed that the absorption properties were improved compared with single absorbing agent such as carbon or glass fiber. the lowest reflection loss of-11.3dB was obtained at 18 GHz of 5wt.% carbon black and 9wt.% glass fiber filled cement with thickness of 20mm. The increase of thickness separately can not improve the absorption properties.


Sign in / Sign up

Export Citation Format

Share Document