Heat and mass transfer in heterogeneous catalysis. XXI. Effect of heat and mass transfer between external surface of the catalyst particle and the bulk of the reaction mixture on steadying of the catalyst particle regime

1970 ◽  
Vol 35 (7) ◽  
pp. 2100-2110
Author(s):  
J. Horák ◽  
F. Jiráček
Author(s):  
Jiqiang Su ◽  
Yuxiang Wu ◽  
Shuliang Huang ◽  
Huiqiang Xu ◽  
Yanmin Zhou

During the steam condensation, the presence of non-condensable gases is an important issue affecting the efficiency of the whole thermodynamic process. For this reason, many researchers investigated it by theoretical or experimental methods. A heat and mass transfer analogy model on steam condensation in presence of air over the vertical external surface based on the diffusion layer model is modified in the present paper. Based on previous authors’ experience, the suction effect at the gas-liquid interface and other analogy drawbacks are identified and overcome by supplementing it with more detailed analysis as well as targeted experiments. The experimental data obtained for condensation, outside vertical tube with an external diameter of 38 mm, of air/steam and helium/air/steam mixture, have been used to verify the present heat and mass transfer analogy formulation. By comparing against different available experimental data and previous formulations, the heat and mass transfer analogy formulation is demonstrated to be a accurate enough theoretical approximation. The deviation between predicted values of the new model and experiment results of this paper is less than 15% which has relative higher precision.


Sign in / Sign up

Export Citation Format

Share Document