Solubility of argon, and gaseous mixture argon-methane-nitrogen in liquid ammonia

1970 ◽  
Vol 35 (12) ◽  
pp. 3757-3761 ◽  
Author(s):  
J. Matouš ◽  
J. Šobr ◽  
J. P. Novák
1976 ◽  
Vol 73 ◽  
pp. 849-851 ◽  
Author(s):  
Thomas Kottarathil ◽  
Gérard Lepoutre

1981 ◽  
Vol 46 (10) ◽  
pp. 2345-2353 ◽  
Author(s):  
Karel Baše ◽  
Bohumil Štíbr ◽  
Jiří Dolanský ◽  
Josef Duben

The 6-N(CH3)3-6-CB9H11 carbaborane reacts with sodium in liquid ammonia with the formation of 6-CB9H12- which was used as a starting compound for preparing the 4-CB8H14, 9-L-6-CB9H13 (L = (CH3)2S, CH3CN and P(C6H5)3), 1-(η5-C5H5)-1,2-FeCB9H10-, and 2,3-(η5-C5H5)2-2,31-Co2CB9H10- carboranes. The 4-CB8H14 compound was dehydrogenated at 623 K to give 4-(7)-CB8H12 carborane. Base degradation of 6-N(CH3)3-6-CB9H11 in methanol resulted in the formation of 3,4-μ-N(CH3)3CH-B5H10. The structure of all compounds was proposed on the basis of their 11B and 1H NMR spectra and X-ray diffraction was used in the case of the transition metal complexes.


1973 ◽  
Vol 3 (1) ◽  
pp. 117-118 ◽  
Author(s):  
Djordje R. Stojaković ◽  
Slobodan D. Radosavljević ◽  
Vera Č. Šćepanović

Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1301
Author(s):  
Oscar E. Medina ◽  
Jaime Gallego ◽  
Sócrates Acevedo ◽  
Masoud Riazi ◽  
Raúl Ocampo-Pérez ◽  
...  

This study focuses on evaluating the volumetric hydrogen content in the gaseous mixture released from the steam catalytic gasification of n-C7 asphaltenes and resins II at low temperatures (<230 °C). For this purpose, four nanocatalysts were selected: CeO2, CeO2 functionalized with Ni-Pd, Fe-Pd, and Co-Pd. The catalytic capacity was measured by non-isothermal (from 100 to 600 °C) and isothermal (220 °C) thermogravimetric analyses. The samples show the main decomposition peak between 200 and 230 °C for bi-elemental nanocatalysts and 300 °C for the CeO2 support, leading to reductions up to 50% in comparison with the samples in the absence of nanoparticles. At 220 °C, the conversion of both fractions increases in the order CeO2 < Fe-Pd < Co-Pd < Ni-Pd. Hydrogen release was quantified for the isothermal tests. The hydrogen production agrees with each material’s catalytic activity for decomposing both fractions at the evaluated conditions. CeNi1Pd1 showed the highest performance among the other three samples and led to the highest hydrogen production in the effluent gas with values of ~44 vol%. When the samples were heated at higher temperatures (i.e., 230 °C), H2 production increased up to 55 vol% during catalyzed n-C7 asphaltene and resin conversion, indicating an increase of up to 70% in comparison with the non-catalyzed systems at the same temperature conditions.


1979 ◽  
Vol 7 (3) ◽  
pp. 281-287 ◽  
Author(s):  
Ryu Sato ◽  
Katsumi Araya ◽  
Yuji Takikawa ◽  
Saburo Takizawa ◽  
Shigeru Oae
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document