Kinetics of inhibition of acetylcholinesterase by 9-hydrazino-1,2,3,4-tetrahydroacridine and 9-amino-10-methyl-1,2,3,4-tetrahydroacridinium in vitro

1980 ◽  
Vol 45 (3) ◽  
pp. 966-976 ◽  
Author(s):  
Jiří Patočka ◽  
Jiří Bajgar ◽  
Jiří Bielavský

The kinetics was studied of the inhibition of solubilized rat brain acetylcholinesterase by 9-hydrazino-1,2,3,4-terahydroacridine (THH) and 9-amino-10-methyl-1,2,3,4-tetrahydroacridinium (QTHA); the inhibitory effect was compared with the effect of tacrine (9-amino-1,2,3,4-tetrahydroacridine, THA). It was observed that THH is a reversible, noncompetitive inhibitor of rat brain acetylcholinesterase (Ki = 0.16 μM) and that it binds, similarly to THA, to the hydrophobic domain of the active center of acetylcholinesterase thus simultaneously inhibiting the formation of complex ES2 with acetylcholine as substrate. This eliminates the inhibition of acetylcholinesterase by an excess of substrate. QTHA is a mixed, competitive-non-competitive inhibitor characterized by KI comp = 5.3 μM and Ki noncomp = 0.08 μM. QTHA binds to an entirely different site of the active surface of acetylcholinesterase than THA and THH. This binding site is most likely the so-called β-anionic or also peripheric anionic site to which, e.g. atropine is also bound. Both inhibitors studied form with acetylcholinesterase a reversible, enzymatically inactive complex in which one inhibitor molecule is bonded to each active center of the enzyme.

2002 ◽  
Vol 57 (5-6) ◽  
pp. 506-511 ◽  
Author(s):  
Stylianos Tsakiris ◽  
Kleopatra H. Schulpis

The aim of this work was to evaluate, in vitro, the effect of ʟ-alanine (Ala) on suckling rat brain acetylcholinesterase (AChE) and on eel Electrophorus electricus pure AChE inhibited by ʟ-phenylalanine (Phe) as well as to investigate whether Phe or Ala is a competitive inhibitor or an effector of the enzyme. AChE activity was determined in brain homogenates and in the pure enzyme after 1 h preincubation with 1.2 mm of Phe or Ala as well as with Phe plus Ala. The activity of the pure AChE was also determined using as a substrate different amounts of acetylthiocholine. Ala reversed completely the inhibited AChE by Phe (18-20% in 500-600 μᴍ substrate, p<0.01). Lineweaver-Burk plots showed that Vmax remained unchanged. However, KM was found increased with Phe (150%, p<0.001), decreased with Ala alone (50%, p<0.001) and unaltered with Phe plus Ala. It is suggested that: a) Phe presents a competitive inhibitory action with the substrate whereas Ala a competitive activation; b) Ala competition with Phe might unbind the latter from AChE molecule inducing the enzyme stimulation; c) Ala might reverse the inhibitory effect of Phe on brain AChE in phenylketonuric patients, if these results are extended into the in vivo reality.


1969 ◽  
Vol 47 (5) ◽  
pp. 501-506 ◽  
Author(s):  
E. G. McGeer ◽  
D. A. V. Peters

Over 700 compounds were screened at 10−4 M concentration as inhibitors of the conversion of L-tryptophan-14C to serotonin-14C in crude rat brain homogenates. Most of the compounds had little or no inhibitory effect. Those with strong inhibitory properties were tested as inhibitors of 5-hydroxytryptophan decarboxylase and, if active on the decarboxylase, were assayed as tryptophan hydroxylase inhibitors. Except for a few oxidizing and complexing agents and for some substituted p-phenylenediamines, the compounds found to inhibit tryptophan hydroxylase by >50% belonged to the three types of inhibitors already known, i.e. catechols, phenylalanine and ring-substituted phenylalanines, and 6-substituted tryptophans. The numerous data in this screen make possible some comments as to the structural requirements for activity within each class. A comparison of the results on tryptophan hydroxylase with data on tyrosine hydroxylase inhibition in similar homogenates makes it clear that two separate, if somewhat similar, enzymes are involved.


2018 ◽  
Vol 109 (2) ◽  
pp. 236-247 ◽  
Author(s):  
H.-H. Zhang ◽  
M.-J. Luo ◽  
Q.-W. Zhang ◽  
P.-M. Cai ◽  
A. Idrees ◽  
...  

AbstractPhenoloxidase (PO) plays a key role in melanin biosynthesis during insect development. Here, we isolated the 2310-bp full-length cDNA of PPO1 fromZeugodacus tau, a destructive horticultural pest. qRT-polymerase chain reaction showed that theZtPPO1transcripts were highly expressed during larval–prepupal transition and in the haemolymph. When the larvae were fed a 1.66% kojic acid (KA)-containing diet, the levels of theZtPPO1transcripts significantly increased by 2.79- and 3.39-fold in the whole larvae and cuticles, respectively, while the corresponding PO activity was significantly reduced; in addition, the larval and pupal durations were significantly prolonged; pupal weights were lowered; and abnormal phenotypes were observed. Anin vitroinhibition experiment indicated that KA was an effective competitive inhibitor of PO inZ. tau. Additionally, the functional analysis showed that 20E could significantly up-regulate the expression ofZtPPO1, induce lower pupal weight, and advance pupation. Knockdown of theZtPPO1gene by RNAi significantly decreased mRNA levels after 24 h and led to low pupation rates and incomplete pupae with abnormal phenotypes during the larval-pupal interim period. These results proved that PO is important for the normal growth ofZ. tauand that KA can disrupt the development of this pest insect.


1976 ◽  
Vol 153 (2) ◽  
pp. 505-507 ◽  
Author(s):  
S Scharpé ◽  
M Eid ◽  
W Cooreman ◽  
A Lauwers

A naturally occurring competitive inhibitor of pig kidney renin has been identified in human plasma. The inhibitor was shown to be α-1 anti-trypsin and the effect in vitro on the renin activity was examined. The slope in the Hill plot is compatible with the assumption of one-site competitive inhibition. Other proteinase inhibitors, such as α-2-macroglobulin and C1 inactivator, however, have no inhibitory effect on the renin-angiotensinogen reaction.


2020 ◽  
Author(s):  
Manjunath Katagi ◽  
Girish Bolakatti ◽  
Sujatha ML ◽  
Suchitra M ◽  
Shivlingrao Mamledesai

1989 ◽  
Vol 256 (1) ◽  
pp. C155-C159 ◽  
Author(s):  
J. Nabekura ◽  
Y. Mizuno ◽  
Y. Oomura

Effects of somatostatin-14 (SRIF) on membrane electrical properties were studied in rat brain stem slice preparations maintained in vitro. SRIF hyperpolarized the resting membrane potential and decreased the input resistance of more than two-thirds of the 85 vagal motoneurons tested in the dorsal motor nucleus of the vagus. These effects persisted under synaptic blockade caused by perfusion with a solution containing tetrodotoxin or a Ca2+-free/high-Mg2+ solution and were dependent on the extracellular SRIF concentration (5 X 10(-8) to 1 X 10(-8) M). The Hill coefficient was estimated to be 2. The reversal potential of SRIF-induced hyperpolarization was affected by changing external K+ concentration. The results suggest that, in addition to its well-known peripheral action, SRIF may inhibit secretomotor functions of visceral organs by reducing vagal output in the central nervous system.


1999 ◽  
Vol 263 (2-3) ◽  
pp. 193-196 ◽  
Author(s):  
Michael Hilgert ◽  
Michael Nöldner ◽  
Shyam S Chatterjee ◽  
Jochen Klein

Author(s):  
Manjunatha S. Katagi ◽  
Jennifer Fernandes ◽  
Darbhamulla Satyanarayana ◽  
Girish Bolakatti ◽  
Shivalingrao NagabhushanMamle

Sign in / Sign up

Export Citation Format

Share Document